...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry
【24h】

Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry

机译:美国国家大气研究中心气候模型中的硫化学:描述,评估,特征和对水化学的敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

Sulfur chemistry has been incorporated in the National Center for Atmospheric Research Community Climate Model in an internally consistent manner with other parameterizations in the model. The model predicts mixing Processes that control the mixing ratio of these species include the emissions of DMS and SO2, transport of each species, gas- and aqueous-phase chemistry, wet deposition, and dry deposition of species. Modeled concentrations agree quite well with observations for DMS and H2O2 fairly well for SO2, and not as well for SO42- The modeled SO42- tends to underestimate observed SO42- at the surface and overestimate observations in the upper troposphere. The SO2 and SO42- species were tagged according to the chemical production pathway and whether the sulfur was of anthropogenic or biogenic origin. Although aqueous-phase reactions in cloud accounted for 81% of the sulfate production rate, only similar to 50-60% of the sulfate burden in the troposphere was derived from cloud chemistry. Because cloud chemistry is an important source of sulfate in the troposphere, the importance of H2O2 concentrations and pH values was investigated. When prescribing H2O2 concentrations to clear-sky values instead of predicting H2O2, the global-averaged, annual-averaged in-cloud production of sulfate increased. Setting the pH of the drops to 4.5 also increased the in-cloud production of sulfate. In both sensitivity simulations, the increased in-cloud production of sulfate decreased the burden of sulfate because less SO2 was available for gas-phase conversion, which contributes more efficiently to the tropospheric sulfate burden than does aqueous-phase conversion. [References: 80]
机译:硫化学已与该模型中的其他参数设置以内部一致的方式并入了国家大气研究社区气候模型中心。该模型预测控制这些物质混合比的混合过程包括DMS和SO2的排放,每种物质的运输,气相和水相化学,湿式沉积和干式沉积。模拟的浓度与DMS和H2O2的SO2观测值非常吻合,而SO42的观测值则不太好。模拟的SO42-倾向低估了表面观测到的SO42-值,而高估了对流层上层的观测值。根据化学生产途径以及硫是人为还是生物来源来标记SO2和SO42-物种。尽管云中的水相反应占硫酸盐产率的81%,但对流层中硫酸盐负荷中只有约50-60%来自云化学。由于云化学是对流层中硫酸盐的重要来源,因此研究了H2O2浓度和pH值的重要性。当规定H2O2浓度为晴空值而不是预测H2O2时,全球平均,年平均云中硫酸盐的产生量增加了。将液滴的pH设置为4.5也会增加云中硫酸盐的产生。在两个灵敏度模拟中,增加的云中硫酸盐产生量减少了硫酸盐负担,因为较少的SO2可用于气相转化,这比水相转化更有效地对流层硫酸盐负担。 [参考:80]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号