首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg 83: Implications for the timing of magnetization
【24h】

Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg 83: Implications for the timing of magnetization

机译:深海钻探项目/海洋钻探计划孔504B,腿83:海脊玄武岩中钛磁铁矿的亚固相演化和蚀变:对磁化时间的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Magnetic minerals in six samples of oceanic basalts of the transition zone and upper sheeted dikes from Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) Hole 504B, Leg 83, were studied by methods of rock magnet:ism and transmission electron microscopy (TEM). TEM observations showed that the magnetic mineral in these basalts is end-member magnetite (TM0) of extremely fine-grain size (30-100 nm) primarily in the range of psuedo-single-domain magnetite, consistent with the rock magnetic properties including hysteresis parameters, Curie temperature, and low-temperature measurements (Verwey transition). Magnetite formed by two different processes: (1) oxidation-"exsolution," true exsolution, and hydrothermal alteration, and (2) oxidation-exsolution, a second stage of oxidation-exsolution, and hydrothermal alteration. The primary titanomagnetite (TM60-70) that crystallized from the melt thus evolved to end-member magnetite coexisting with titanite (sphene), kassite, ulvospinel (TM similar to 87), and ilmenite on a submicroscopic scale. On the basis of the formation mechanisms of the magnetic carrier, the primary titanomagnetite (TM similar to 60) with Curie temperature of similar to 180 degrees C did not acquire thermoremanent magnetization (TRM) in these basalts. Instead, the Ti-bearing magnetite (TM similar to 10-20) that formed as oxidized or exsolved lamellae acquired its first thermal chemical remanent magnetization (CRM) at similar to 500-400 degrees C during subsolidus cooling. Upon the onset of hydrothermal alteration the recrystallized end-member magnetite acquired a second CRM. The natural remanent magnetization of the basalts from the transition zone and upper sheeted dikes is therefore characteristic of CRMs that were acquired when titanomagnetite altered, in part, to magnetite during subsolidus cooling and hydrothermal alteration close to the ridge axis. [References: 53]
机译:通过岩石磁体方法和传输电子显微镜研究了来自深海钻探项目/海洋钻探计划(DSDP / ODP)腿504B洞83处的六个过渡带海洋玄武岩样品和上片堤坝中的磁性矿物( TEM)。 TEM观察表明,这些玄武岩中的磁性矿物是端粒磁铁矿(TM0),其极细粒度(30-100 nm),主要在伪单畴磁铁矿范围内,与包括磁滞现象在内的岩石磁性相一致参数,居里温度和低温测量(Verwey转换)。磁铁矿由两种不同的过程形成:(1)氧化-“析出”,真正的析出和水热蚀变,和(2)氧化-析出,第二阶段的氧化-析出和水热蚀变。从熔体中结晶出的初级钛磁铁矿(TM60-70)因此演化为亚显微尺寸的与钛铁矿(方晶石),钾铁矿,ulvospinel(类似于87)和钛铁矿共存的端部磁铁矿。根据磁性载体的形成机理,居里温度类似于180摄氏度的一次钛磁铁矿(TM类似于60)在这些玄武岩中未获得热剩磁(TRM)。取而代之的是,在亚固相线冷却过程中,以氧化或溶解的薄片形式形成的含Ti磁铁矿(类似于10-20的钛)获得了其第一热化学剩余磁化强度(CRM),接近500-400摄氏度。水热蚀变开始后,重结晶的端部磁铁矿获得了第二个CRM。因此,从过渡带和上片状堤坝出来的玄武岩的自然剩余磁化强度是CRM的特征,当钛磁铁矿在近固相线冷却和靠近脊轴的水热蚀变过程中部分变成磁铁矿时,就获得了CRM。 [参考:53]

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号