...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Spectral kernel approach to study radiative response of climate variables and interannual variability of reflected solar spectrum
【24h】

Spectral kernel approach to study radiative response of climate variables and interannual variability of reflected solar spectrum

机译:光谱核方法研究气候变量的辐射响应和反射太阳光谱的年际变化

获取原文
获取原文并翻译 | 示例

摘要

The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel-derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.
机译:辐射核方法提供了一种简单的方法,可以将对不同气候参数的辐射响应分开,并将反馈分解为辐射和气候响应成分。利用CERES / MODIS / Geostationary数据,我们计算并分析了区域,区域和全球空间尺度上各种气候参数的太阳光谱反射率内核。测试内核线性。由于非线性而导致的内核误差会根据气候参数,波长,表面和太阳高度而变化很大。对于某些参数,它们在某些吸收带中较大,但在大多数情况下可以忽略不计。光谱核用于计算对不同纬度下不同气候参数变化的辐射响应。结果表明,高纬度地区的辐射响应对雪和海冰的覆盖敏感。低纬度地区的辐射响应主要是由云的性质变化引起的,尤其是云比例和光学深度。大的云高效应仅限于吸收带,而云的粒径效应主要存在于近红外区域。然后,通过与来自大气成像的扫描成像吸收光谱仪(SCIAMACHY)(不同航天器上的另一台仪器)的光谱测量结果进行直接比较,来测试基于CERES检索的核方法。基于核技术的光谱反射率的月平均年际变化与海洋,而非陆地上的卫星观测结果一致,在陆地和海洋上,模型和数据均具有较大的不确定性。与观测值相比,海洋中由核得出的月度全球平均反射率的RMS误差约为0.001,采样误差可能是主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号