...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction
【24h】

Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction

机译:对WRF模型实施了两步的整体微物理方案以研究气溶胶-云相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

A two-moment bulk microphysical scheme has been implemented into the Weather Research and Forecasting (WRF) model to investigate the aerosol-cloud interaction. The microphysical scheme calculates the mass mixing ratios and number concentrations of aerosols and five types of hydrometeors and accounts for various cloud processes including warm and mixed phase microphysics. The representation of the aerosol size distribution is evaluated, showing that the three-moment modal method produces results better in agreement with the sectional approach than the two-moment modal method for variable supersaturation conditions in clouds. The effects of aerosols on cloud processes are investigated using the two-moment bulk microphysical scheme in a convective cumulus cloud event occurring on 24 August 2000 in Houston, Texas. The modeled evolution of the distribution of radar reflectivity in the y-z section, the cell lifetime, and averaged accumulated precipitation with the aerosol concentration under the polluted urban condition are qualitatively consistent with the measurements. Sensitivity simulations are initialized using a set of aerosol profiles with the number concentrations ranging from 200 to 50,000 cm?3 and mass ranging from 1 to 10 μg m?3 at the surface level. The response of precipitation to the increase of aerosol concentrations is nonmonotonic, because of the complicated interaction between cloud microphysics and dynamics. The precipitation increases with aerosol concentrations from clean maritime to continental background conditions, but is considerably reduced and completely suppressed under highly polluted conditions, indicating that the aerosol concentration exhibits distinct effects on the precipitation efficiency under different aerosol conditions. The maximal cloud cover, core updraft, and maximal vertical velocity exhibit similar responses as precipitation. Comparison is made to evaluate the effects of different autoconversion parameterizations and bulk microphysical schemes on cloud properties. Because of its broad application in numerical weather prediction, implementation of the two-moment microphysical scheme to the WRF model will greatly facilitate assessment of aerosol-cloud interaction from individual cumulus to mesoscale convective systems.
机译:在气象研究和预报(WRF)模型中已实施了两步的整体微物理方案,以研究气溶胶与云的相互作用。微物理方案计算气溶胶和五种类型的水凝物的质量混合比和数量浓度,并解释包括暖相和混合相微物理学在内的各种云过程。对气溶胶尺寸分布的表示进行了评估,结果表明,对于云中的可变过饱和条件,三矩模态方法产生的结果与截面方法相比,比二矩模态方法更好。在2000年8月24日于德克萨斯州休斯敦发生的对流积云事件中,使用两步整体微物理方案研究了气溶胶对云过程的影响。在污染的城市条件下,雷达反射率在y-z区域,电池寿命和平均累积降水与气溶胶浓度的模拟演变与测量结果在质量上是一致的。使用一组浓度在200到50,000 cm?3范围内的质量浓度在1到10μgm?3范围内的气溶胶轮廓初始化灵敏度模拟。降水对气溶胶浓度增加的响应是非单调的,因为云微观物理与动力学之间存在复杂的相互作用。从干净的海洋到大陆本底条件,降水量随气溶胶浓度的增加而增加,但在高度污染的条件下,降水量大大减少并被完全抑制,这表明在不同气溶胶条件下,气溶胶浓度对降水效率表现出明显的影响。最大的云量,核心上升气流和最大垂直速度表现出与降水相似的响应。进行比较以评估不同的自动转换参数设置和整体微物理方案对云性能的影响。由于其在数值天气预报中的广泛应用,对WRF模型实施的两步微物理方案将极大地促进从单个积云到中尺度对流系统的气溶胶-云相互作用的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号