首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for PM2.5 control strategies
【24h】

Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for PM2.5 control strategies

机译:冬季硫酸盐-氨水-硝酸系统中热力学和去除过程的模拟:对PM2.5控制策略的影响

获取原文
获取原文并翻译 | 示例
       

摘要

In the eastern United States, inorganic species account for approximately half of the PM2.5 mass, with sulfate salts comprising the largest fraction. Current strategies for reducing PM2.5 mass concentrations target reducing SO2 to reduce sulfate, but in such a case more ammonium nitrate may form when nitric acid is present. Large-scale chemical transport models suffer from uncertainties associated with emission inventories. To examine how the inorganic PM2.5 concentration responds to changes in emissions, we introduce an observation-based box model, the thermodynamic model with removal (TMR), to estimate responses of PM2.5 to precursor concentrations. TMR assumes that particles are in equilibrium with the gas phase, but the removal rate of total (PM2.5 + gas) nitric acid from the system depends on the gas/aerosol partitioning of this species. The model is used to investigate sulfate, total ammonia, and total nitric acid control strategies for western Pennsylvania during the winter using measurements obtained in the Pittsburgh Air Quality Study. Predictions from TMR are compared with observations and predictions of a chemical equilibrium model (GFEMN), where the perturbation of sulfate or total ammonia does not affect the total nitric acid availability. Results show that TMR predicts more aerosol nitrate to form than GFEMN in scenarios where the total ammonia to sulfate ratio is increased, but model results are similar under ammonia-limited conditions. When sulfate is reduced by 50% during the winter, GFEMN predicts that inorganic PM2.5 mass concentrations will be reduced by 23%, while TMR predicts that there will only be an 8% reduction. For a 50% reduction in ammonia availability, inorganic PM2.5 was reduced by 29%, while for a 50% reduction in total nitric acid a 17% reduction in inorganic PM2.5 was predicted. The analysis suggests the importance of the phase state of the aerosol for the effectiveness of the emission control strategies.
机译:在美国东部,无机物约占PM2.5质量的一半,其中硫酸盐占最大比例。当前降低PM2.5质量浓度的策略的目标是还原SO2以还原硫酸盐,但是在这种情况下,当存在硝酸时,可能会形成更多的硝酸铵。大规模的化学品运输模型存在与排放清单相关的不确定性。为了检查无机PM2.5浓度如何响应排放物的变化,我们引入了基于观测的盒子模型,即带去除的热​​力学模型(TMR),以估计PM2.5对前驱物浓度的响应。 TMR假定颗粒与气相处于平衡状态,但是从系统中去除的总硝酸(PM2.5 +气体)硝酸率取决于该物质的气体/气溶胶分配。该模型用于使用匹兹堡空气质量研究中获得的测量值来研究冬季宾夕法尼亚州西部的硫酸盐,总氨和总硝酸控制策略。将TMR的预测结果与化学平衡模型(GFEMN)的观察结果和预测结果进行比较,在该模型中,硫酸盐或总氨的扰动不会影响总硝酸的利用率。结果表明,在总氨水比增加的情况下,TMR预测比GFEMN形成更多的硝酸盐气溶胶,但在氨水受限的条件下,模型结果相似。当冬季将硫酸盐减少50%时,GFEMN预测无机PM2.5质量浓度将减少23%,而TMR预测只会减少8%。氨利用率降低50%,无机PM2.5降低29%,总硝酸降低50%,无机PM2.5降低17%。分析表明,气溶胶的相态对于排放控制策略的有效性至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号