...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave
【24h】

A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave

机译:非均匀大气中辐射传递模拟的k分布技术:2. FKDM,短波的快速k分布模型

获取原文
获取原文并翻译 | 示例

摘要

A new technique for developing k-distributions applied to longwave radiation parameterization has been presented in a preceding paper. Now we discuss an extension of this technique to the shortwave spectral range. A fast k-distribution model (FKDM) for gaseous absorption calculations suitable for use in weather and climate prediction is described. FKDM has been created using 15 k-distribution terms only, less than in other comparable codes. The molecular species represented in the model are H2O, CO2, O3, and O2. In k-distribution terms, characterized by strong absorption, representative absorption cross section is treated as a function of absorber amount along the direct solar radiation path, thus allowing improved fitting of solar fluxes and heating rates in upper troposphere and stratosphere. This technique has been applied to derive effective single-scattering properties of clouds in each term for a more accurate treatment of cloud optical properties by taking into account correlation between water vapor and liquid water or ice absorption. It is shown that disregarding the above correlation in radiation models can essentially distort simulated fluxes and heating rates. FKDM has been developed and validated using a fast line-by-line model (FLBLM). Both FKDM and FLBLM used a Monte-Carlo code. Validations have covered the tropical, midlatitude summer, midlatitude winter, subarctic summer, subarctic winter, and U.S. standard atmospheres, four atmospheres from the Spectral Radiance Experiment campaign, and a case of an observed tropical atmosphere. It is found that the FKDM heating rate accuracy for clear-sky conditions is as follows: ~0.1 and ~0.2 K d?1 in the troposphere for standard and real atmospheres, respectively, and ~0.5 K d?1 in all the cases at altitudes below 70 km. Downward flux errors are below 1%, upward flux errors are below 2% (usually ~1.5 W m?2), and total atmospheric absorption errors are below 3% (usually 1.5–3 W m?2) in every case. The Intercomparison of Radiation Codes in Climate Models (ICRCCM) cloud models have also been used for the validations. It has been demonstrated that the usage of the technique to derive effective cloud optical properties halves maximal errors in calculated radiation fluxes absorbed by cloud.
机译:在先前的论文中提出了一种新的开发用于长波辐射参数化的k分布的技术。现在我们讨论将该技术扩展到短波频谱范围。描述了适用于天气和气候预测的用于气体吸收计算的快速k分布模型(FKDM)。 FKDM仅使用15 k分布项创建,少于其他可比较代码中的项。模型中代表的分子种类是H2O,CO2,O3和O2。以高吸收为特征的k分布项,代表吸收截面是沿直接太阳辐射路径吸收体数量的函数,因此可以改善对流层和平流层中太阳通量和加热速率的拟合。通过考虑水蒸气与液态水或冰吸收之间的相关性,已将该技术应用于在每个项中得出有效的云单散射特性,以便更精确地处理云的光学特性。结果表明,忽略辐射模型中的上述相关性会实质上扭曲模拟通量和加热速率。 FKDM已使用快速逐行模型(FLBLM)开发和验证。 FKDM和FLBLM都使用了蒙特卡洛代码。验证涵盖了热带,中纬度夏季,中纬度冬季,北极夏季,北极冬季和美国标准大气,光谱辐射实验活动中的四种大气以及观测到的热带大气。结果表明,晴空条件下的FKDM升温速率精度如下:对流层中标准大气和真实大气分别为〜0.1 Kd?1和〜0.2 K d?1,而在所有情况下,对流层温度均为〜0.5 K d?1。海拔低于70公里。在每种情况下,向下的通量误差低于1%,向上的通量误差低于2%(通常约为1.5 W m?2),总的大气吸收误差低于3%(通常为1.5-3 W m?2)。气候模型中的辐射代码比对(ICRCCM)云模型也已用于验证。已经证明,使用该技术得出有效的云光学特性可以将计算出的被云吸收的辐射通量的最大误差减半。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号