首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics
【24h】

Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics

机译:使用天气研究和具有光谱箱微物理学的预报模型在干净和肮脏的大气中模拟超级单体风暴

获取原文
获取原文并翻译 | 示例
           

摘要

The development of supercell storms was simulated using a 2-km-resolution weather research and forecast (WRF) model with spectral (bin) microphysics (WRF-SBM) and a recent version of the Thompson bulk-parameterization scheme. The simulations were performed in clean, semipolluted, and dirty air under two values of relative humidity, conditionally referred to as low and high humidity. Both SBM and the Thompson scheme simulated the development of supercell storm with storm splitting. Both SBM and the Thompson scheme demonstrated that an increase in relative humidity by 10% invigorates convection and increases precipitation by factor of 2, i.e., to much larger extent than can be achieved by variations of the aerosol concentration. At the same time the storms simulated by the schemes are quite different. The maximum updrafts in the Thompson scheme are about 65 m/s, and the left-moving storm prevails. The SBM predicts 35 m/s maximum updrafts, and the right-moving storm prevails in the SBM simulations. While the bulk scheme predicts decrease in precipitation in clean air at both low and high humidity, the SBM indicates decrease precipitation in polluted air under low humidity and increase in precipitation under high humidity. The SBM scheme shows a substantial effect of aerosols on spatial distribution of precipitation, especially in the low-humidity case. The sensitivity of the Thompson scheme to aerosols turns out to be much less than that of SBM. The difference in the results (vertical velocities, microphysical cloud structure, and precipitation) obtained by different schemes is much larger than the changes caused by variation of the aerosol concentration within each scheme. However, the average amount of precipitation in the Thompson scheme in each simulation was about twice that of the corresponding SBM simulation. The possible reasons for such difference are discussed. A scheme for classifying aerosol effects on precipitation from clouds and cloud systems is also discussed.
机译:利用具有光谱(箱)微物理学的2 km分辨率天气研究和预报(WRF)模型(WRF-SBM)和Thompson体参数化方案的最新版本,模拟了超级单体风暴的发展。在清洁,半污染和肮脏的空气中,在两个相对湿度(有条件地称为低湿度和高湿度)下进行模拟。 SBM和Thompson方案都通过风暴分裂模拟了超级单体风暴的发展。 SBM和Thompson方案均表明,相对湿度增加10%可以增强对流,并使降水增加2倍,即,其程度比气溶胶浓度变化所能达到的程度大得多。同时,通过这些方案模拟的风暴完全不同。汤普森方案中的最大上升气流约为65 m / s,并且向左移动的风暴盛行。 SBM预测最大上升气流为35 m / s,SBM模拟中普遍存在向右移动的风暴。总体方案预测在低湿度和高湿度下清洁空气中的降水都会减少,而SBM则表明低湿度下污染空气中的降水减少,而高湿度下则增加。 SBM方案显示了气溶胶对降水的空间分布有很大影响,特别是在低湿度情况下。汤普森方案对气溶胶的敏感度远小于SBM。通过不同方案获得的结果差异(垂直速度,微物理云结构和降水)远大于每种方案中气溶胶浓度变化所引起的变化。但是,每个模拟中汤普森方案中的平均降水量约为相应SBM模拟的两倍。讨论了这种差异的可能原因。还讨论了一种对气溶胶对云和云系统降水的影响进行分类的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号