...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Biosphere-atmosphere gross carbon exchange flux and the d13CO2 and D14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory
【24h】

Biosphere-atmosphere gross carbon exchange flux and the d13CO2 and D14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory

机译:生物圈-大气总碳交换通量以及d13CO2和D14CO2不平衡受到生物圈过量放射性碳清单的限制

获取原文
获取原文并翻译 | 示例

摘要

Estimates of the global biospheric excess 14C inventory IB 14,E from Naegler and Levin (2009) were used to constrain the age distribution a(t) in heterotrophically respired CO2 with a simple (radio)carbon model of the global biosphere. Subsequently, a(t) could be used to estimate the global gross carbon exchange Feq C (net primary productivity, NPP, and heterotrophic respiration) between atmosphere and biosphere as well as both the d13C and D14C signatures in heterotrophically respired CO2 (d13CRH and D14CRH, respectively). Our estimates of Feq C range from 41 to 64 petagrams carbon per year (Pg C a1), with a best estimate of 55 Pg C a1. The uncertainty of this value is dominated by the uncertainties of IB 14,E and of the net biospheric uptake of anthropogenic CO2. Limitations intrinsic to our approach as well as uncertainties in effective global average atmospheric D14CO2 add an uncertainty of ±3 Pg C a1. The d13CRH of heterotrophically respired CO2 lags the d13C of assimilated CO2 by 10–17 years. This leads to a somewhat smaller estimate of the biospheric 13CO2 disequilibrium flux than previously assumed. D14CRH increased from 20% in the early 1950s to maximum values of 300–325%in the late 1960s/early 1970s. In the 1980s, when the maximum IB 14,E occurred, D14CRH was in a transient equilibrium with the atmosphere. The D14C disequilibrium between atmosphere and biosphere increased to D14CDIS = 20–50% in the mid-1990s, before it dropped to 15–40% in 2005.
机译:Naegler和Levin(2009)对全球生物圈中过量14 C存量的估算IB 14,E被用来通过全球生物圈的简单(放射性)碳模型来限制异养呼吸的CO2的年龄分布a(t)。随后,可以使用a(t)估算大气和生物圈之间的全球总碳交换Feq C(净初级生产力,NPP和异养呼吸)以及异养呼吸的CO2中的d13C和D14C特征(d13CRH和D14CRH , 分别)。我们估计的Feq C范围为每年41至64皮克碳(Pg C a1),最佳估计值为55 Pg C a1。该值的不确定性主要由IB 14E和人为产生的CO2的生物圈净吸收量的不确定性决定。我们方法固有的局限性以及有效的全球平均大气D14CO2的不确定性增加了±3 Pg C a1的不确定性。异养呼吸的二氧化碳的d13CRH比同化二氧化碳的d13C落后10-17年。这导致对生物圈13CO2不平衡通量的估计值比以前假设的要小。 D14CRH从1950年代初的20%增加到1960年代末/ 1970年代初的最大值300-325%。在1980年代,当最大的IB 14,E出现时,D14CRH与大气处于瞬时平衡状态。大气与生物圈之间的D14C不平衡在1990年代中期增加到D14CDIS = 20–50%,在2005年下降到15–40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号