...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Evaluation of cloud-resolving and limited areamodel intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties
【24h】

Evaluation of cloud-resolving and limited areamodel intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties

机译:使用TWP-ICE观测值评估云解析和有限区域模型的比对模拟:1.深对流上升气流特性

获取原文
获取原文并翻译 | 示例
           

摘要

Ten 3-D cloud-resolvingmodel simulations and four 3-D limited area model simulations of an intense mesoscale convective system observed on 23–24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are comparedwith each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high-bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Making snow mass more realistically proportional to D~2 rather than D~3 eliminates unrealistically large snow reflectivities over 40 dBZ in some simulations. Graupel, unlike snow, produces high biased reflectivity in all simulations, which is partly a result of parameterized microphysics but also partly a result of overly intense simulated updrafts. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler-retrieved values, especially in the upper troposphere. Freezing of liquid condensate, often rain, lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. The strongest simulated updraft cores are nearly undiluted, with some of the strongest showing supercell characteristics during the multicellular (presquall) stage of the event. Decreasing horizontal grid spacing from 900 to 100 m slightly weakens deep updraft vertical velocity and moderately decreases the amount of condensate aloft but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may additionally be a product of unrealistic interactions between convective dynamics, parameterized microphysics, and large-scale model forcing that promote different convective strengths than observed.
机译:将2006年1月23日至24日热带暖池-国际云实验(TWP-ICE)期间观测到的强中尺度对流系统的10个3-D云解析模型模拟和4个3-D有限区域模型模拟相互比较,并与观察到的雷达反射率场和垂直风速的双多普勒反演,试图解释已发表的结果,这些结果表明高空模拟对流雷达反射率存在高偏差。这种高偏差是由于冰水含量高而引起的,而冰水含量是大的强对流上升气流的产物,尽管水凝物大小分布假设会调节这种偏差的大小。在某些模拟中,使雪量与D〜2而不是D〜3更实际地成比例,从而消除了超过40 dBZ的不切实际的大雪反射率。与雪不同,Graupel在所有模拟中均产生高偏差的反射率,这部分是由于参数化微观物理学的结果,也部分是由于过度剧烈的模拟上升气流的结果。深对流上升气流中的峰值垂直速度大于双多普勒获取的值,特别是在对流层上部。在模拟的上升气流核心中,凝结水(通常是雨水)的冻结高度高于冻结水平,这极大地导致了这些过高的对流层垂直速度。最强的模拟上升气流核心几乎没有被稀释,其中一些最强的上升气流在事件的多细胞(震前)阶段表现出超细胞特征。将水平网格间距从900 m减小到100 m会稍微减弱深部上升气流的垂直速度,并适度减少高空凝结水的数量,但不足以与观测值相匹配。因此,过度强烈的模拟上升气流可能是对流动力学,参数化微观物理学和大规模模型强迫之间不切实际的相互作用的产物,这些相互作用促进了与观测值不同的对流强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号