首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Estimating the dynamics of ecosystem CO2 flux and biomass production in agricultural fields on the basis of synergy between process models and remotely sensed signatures
【24h】

Estimating the dynamics of ecosystem CO2 flux and biomass production in agricultural fields on the basis of synergy between process models and remotely sensed signatures

机译:基于过程模型和遥感信号之间的协同作用,估算农田中生态系统CO2通量和生物量生产的动态

获取原文
获取原文并翻译 | 示例
       

摘要

The objective of this study was to investigate the potential of synergy between biophysical/ecophysiological models and remote sensing for the dynamic estimation of biomass and net ecosystem exchange of CO2 (NEECO2). We obtained a long-term data set of micrometeorological, plant, and remote sensing measurements over well-managed uniform agricultural fields. The NEECO2 was measured using the eddy covariance method (ECM), and remote sensing signatures were obtained using optical and thermal sensors. A soil-vegetation-atmosphere transfer (SVAT) model was linked with remotely sensed signatures for the simulation of CO2 and water fluxes, as well as biomass, photosynthesis, surface temperatures, and other ecosystem variables. The model was calibrated and validated using an 8-year data set, and the performance of the model was excellent when all necessary input data and parameters were available. However, simulations using the model alone were subject to great uncertainty when some of the important input/parameters such as soil water content were unavailable. Dynamic optimization of parameter/input for the SVAT model using remotely sensed information allows us to infer the target parameters within the model or unknown inputs for the model through iterative optimization procedures. A robust relationship between the leaf area index (LAI) and the normalized difference vegetation index (NDVI) was derived and used for optimization. Our results showed that simulated biomass and NEECO2 agreed well with those measured using destructive sampling and the ECM, respectively. Remotely sensed information can greatly reduce the uncertainty of simulation models by compensating for insufficient availability of data or parameters. This synergistic approach allows the effective use of infrequent and multisource remote sensing data for estimating important ecosystem variables such as biomass growth and ecosystem CO2 flux.
机译:这项研究的目的是研究生物物理/生态生理模型与遥感之间的协同潜力,以动态估算生物量和CO2(NEECO2)的净生态系统交换。我们获得了管理良好的统一农业领域的微气象,植物和遥感测量的长期数据集。使用涡度协方差方法(ECM)测量NEECO2,并使用光学和热传感器获得遥感信号。土壤-植被-大气迁移(SVAT)模型与遥感特征相关联,用于模拟CO2和水通量以及生物量,光合作用,地表温度和其他生态系统变量。该模型使用8年数据集进行了校准和验证,当所有必要的输入数据和参数均可用时,模型的性能非常好。但是,当一些重要的输入/参数(例如土壤含水量)不可用时,仅使用模型进行的模拟就存在很大的不确定性。使用遥感信息对SVAT模型进行参数/输入的动态优化,使我们能够通过迭代优化过程来推断模型内的目标参数或模型的未知输入。得出叶面积指数(LAI)与归一化差异植被指数(NDVI)之间的稳固关系,并将其用于优化。我们的结果表明,模拟生物量和NEECO2分别与使用破坏性采样和ECM测得的结果吻合良好。遥感信息可以通过补偿数据或参数的不足来极大地降低仿真模型的不确定性。这种协同方法允许有效地使用不频繁的多源遥感数据来估算重要的生态系统变量,例如生物量增长和生态系统CO2通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号