首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity
【24h】

Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity

机译:全球变暖下哈德利环流变化的减弱和加强结构及其对云响应和气候敏感性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

It has long been recognized that differences in climate model-simulated cloud feedbacks are a primary source of uncertainties for the model-predicted surface temperature change induced by increasing greenhouse gases such as CO_2. Large-scale circulation broadly determines when and where clouds form and how they evolve. However, the linkage between large-scale circulation change and cloud radiative effect (CRE) change under global warming has not been thoroughly studied. By analyzing 15 climate models, we show that the change of the Hadley Circulation exhibits meridionally varying weakening and strengthening structures, physically consistent with the cloud changes in distinct cloud regimes. The regions that experience a weakening (strengthening) of the zonal-mean circulation account for 54% (46%) of the multimodel-mean top-of-atmosphere (TOA) CRE change integrated over 45°S–40°N. The simulated Hadley Circulation structure changes per degree of surface warming differ greatly between the models, and the intermodel spread in the Hadley Circulation change is well correlated with the intermodel spread in the TOA CRE change. This correlation underscores the close interactions between large-scale circulation and clouds and suggests that the uncertainties of cloud feedbacks and climate sensitivity reside in the intimate coupling between large-scale circulation and clouds. New model performance metrics proposed in this work, which emphasize how models reproduce satellite-observed spatial variations of zonal-mean cloud fraction and relative humidity associated with the Hadley Circulation, indicate that the models closer to the satellite observations tend to have equilibrium climate sensitivity higher than the multimodel mean.
机译:长期以来,人们已经认识到,气候模型模拟的云反馈的差异是模型预测的由增加的温室气体(例如CO_2)引起的表面温度变化的不确定性的主要来源。大规模的环流大致决定了云的形成时间和地点以及它们如何演化。然而,尚未全面研究全球变暖下大规模环流变化与云辐射效应(CRE)变化之间的联系。通过分析15个气候模型,我们发现哈德利环流的变化表现出子午线变化的减弱和增强结构,在物理上与不同云区中的云变化一致。纬向平均环流减弱(增强)的区域占在45°S–40°N积分的多模型平均大气顶(TOA)CRE变化的54%(46%)。模型之间每表面变暖程度模拟的Hadley环流结构变化之间存在很大差异,并且Hadley环流变化中的模型间扩展与TOA CRE变化中的模型间扩展密切相关。这种相关性强调了大尺度环流与云之间的紧密相互作用,并表明云反馈和气候敏感性的不确定性在于大尺度环流与云之间的紧密耦合。这项工作中提出的新的模型性能指标强调了模型如何重现与Hadley环流相关的卫星观测的纬向平均云量和相对湿度的空间变化,表明距离卫星观测更近的模型倾向于具有更高的平衡气候敏感性。比多模型的意思。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号