首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Circulation and surface controls on the lower tropospheric air temperature field of the Arctic
【24h】

Circulation and surface controls on the lower tropospheric air temperature field of the Arctic

机译:北极低层对流层空气温度场的环流和表面控制

获取原文
获取原文并翻译 | 示例
           

摘要

Characteristics of the 925 hPa Arctic air temperature field are evaluated with respect to controls by horizontal temperature advection, vertical motion, and characteristics of the underlying land and ocean surface. The highest winter mean temperatures in the Arctic, found in the Norwegian and Barents seas, are maintained primarily by cold horizontal advection countered by diabatic heating, the latter linked to open ocean waters. By comparison, temperatures over the central Arctic Ocean are primarily maintained by warm advection and diabatic cooling. Depending on the region, vertical motion opposes (notably off the east coast of Greenland) or reinforces forcing by advection. For summer, cold advection over snow-free land is countered by diabatic warming. This contrasts sharply with the Arctic Ocean, where warm advection and (locally) downward vertical motion combine to oppose pronounced diabatic cooling, the latter linked to surface melt and heat uptake in the ocean mixed layer. Prominent temperature anomalies in all seasons accompany onshore and offshore flow. For example, summer northerlies, blowing off the Arctic Ocean, yield cold anomalies over northern Eurasia extending far inland from the coast. While onshore winter westerlies yield above-average temperatures over northwestern Eurasia and the Barents and Kara seas, easterlies yield cold anomalies in the same regions. The most recent decade (2000-2009) has seen positive temperature anomalies over most of the Arctic for northerlies, easterlies, southerlies, and westerlies and for all seasons. Influences of recent shifts in atmospheric circulation, reduced sea ice extent, and rising sea surface temperature are prominent, especially for winter and autumn.
机译:通过水平温度对流,垂直运动以及下面的陆地和海洋表面的特征,对照控制评估了925 hPa北极空气温度场的特征。挪威和巴伦支海中发现的北极冬季最高平均温度主要由冷水平流维持,而绝热则抵消了平流,后者与开放的海水有关。相比之下,北冰洋中部的温度主要通过热对流和绝热降温来维持。视区域而定,垂直运动会相互对抗(特别是在格陵兰岛东海岸外),或者通过平流加强作用力。在夏季,绝热变暖抵消了无雪土地上的冷平流。这与北冰洋形成鲜明对比,在北冰洋,热对流和(局部)向下的垂直运动相结合,阻止了显着的绝热冷却,后者与海洋混合层的表面融化和热量吸收有关。在所有季节中,陆上和海上流动都伴随着明显的温度异常。例如,夏季北风吹向北冰洋,在欧亚大陆北部产生了从海岸向内陆延伸的寒冷异常。陆上冬季西风使欧亚大陆西北部以及巴伦支海和卡拉海的温度高于平均水平,而东风使同一地区的寒冷异常。最近的十年(2000-2009年),北极,东风,南风和西风以及所有季节的北极大部分地区都出现了正温度异常。最近的大气环流变化,海冰面积减少和海面温度升高的影响非常明显,尤其是在冬季和秋季。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号