...
首页> 外文期刊>Journal of Geophysical Research, C. Oceans: JGR >Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean
【24h】

Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean

机译:来自北冰洋冰量平衡浮标的多年海冰热状况和海洋热通量

获取原文
获取原文并翻译 | 示例
           

摘要

[1] The conductive and oceanic heat fluxes and the mass balance of sea ice were investigated utilizing an ice mass balance buoy (IMB) deployed in the Arctic Ocean. After IMB deployment, the ice thinned from 1.95 m in late August to 1.46 m by mid-October 2008. From then on, ice growth until mid-June 2009 increased the ice thickness to 3.12 m. The ice temperature and consequently the conductive heat flux at the ice surface exhibited persistent high-frequency variations due to diurnal and synoptic-scale atmospheric forcing. These signals propagated downward with damped magnitude and temporal lag. The competition of oceanic and conductive heat flux dominated the low-frequency variations of ice growth. However, high-frequency variations in ice growth were controlled largely by the oceanic heat flux. From mid-November 2008 to mid-June 2009, the average oceanic heat flux along a track from 86.2°N, 115.2°W to 84.6°N, 33.9°W was 7.1 W/m~2. This was in agreement with that derived from an IMB deployed in 2005, about 1.5° to the north of our buoy. We attributed the relatively high oceanic heat flux (10-15 W/m~2) observed during autumn and early winter to summer warming of the surface ocean. Upward mixing of warm deep water, as observed when our buoy drifted over the shallow region of the Lomonosov Ridge (85.4°-85.9°N, 52.2°-66.4°W), demonstrated the impact of bathymetry on the oceanic heat flux under ice cover, and consequently on the basal ice mass balance.
机译:[1]利用部署在北冰洋的冰质平衡浮标(IMB)研究了海冰的传导和海洋热通量以及质量平衡。在IMB部署后,冰层从8月下旬的1.95 m变薄到2008年10月中旬的1.46 m。从那时起,直到2009年6月中旬,冰的生长使冰层厚度增加到3.12 m。由于昼夜和天气尺度的大气强迫,冰的温度以及因此在冰表面的传导热通量表现出持续的高频变化。这些信号以衰减的幅度和时间滞后向下传播。海洋和传导热通量的竞争主导了冰块生长的低频变化。但是,冰生长的高频变化主要由海洋热通量控制。从2008年11月中旬至2009年6月中旬,沿北纬86.2°N,115.2°W到84.6°N,33.9°W的路径的平均海洋热通量为7.1 W / m〜2。这与2005年部署的IMB(从我们浮标以北约1.5度)得出的结果一致。我们将秋季和初冬期间观测到的相对较高的海洋热通量(10-15 W / m〜2)归因于表层海洋的夏季变暖。当我们的浮标漂流在罗蒙诺索夫山脊的浅水区(85.4°-85.9°N,52.2°-66.4°W)时观察到的温暖深水的向上混合,证明了测深法对冰盖下海洋热通量的影响,并因此影响基础冰块的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号