首页> 外文期刊>Journal of Geophysical Research, C. Oceans: JGR >Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry
【24h】

Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry

机译:罗斯海中的铁:1.通过浮游植物官能团的变化和非雷德菲尔德化学计量对二氧化碳通量的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We present new model results examining nutrient and carbon biogeochemistry within the Ross Sea, focusing on the sensitivity of ecosystem dynamics to taxon-specific nutrient utilization parameters and the impact of alleviating Fe limitation of phytoplankton growth. The coupled ice-atmosphere-ocean ecosystem (CIAO) model of the Ross Sea was modified to include air-sea CO2 exchange and non-Redfield C/N/P uptake ratios of the dominant phytoplankton taxa. Model results show that the Ross Sea was a substantial sink for atmospheric CO2, driven by the high primary productivity prior to the onset of Fe limitation. Taxon-specific C/N/P uptake ratios controlled the relative rate of removal of each macronutrient, while Fe availability constrained the absolute magnitude of utilization. When Redfield C/N/P stoichiometry was applied to both phytoplankton taxa, net primary production (NPP) was overestimated in areas normally dominated by diatoms and underestimated in regions of Phaeocystis antarctica dominance, and macronutrient dynamics were misrepresented. Simulated shifts in phytoplankton taxonomic composition significantly altered uptake of atmospheric CO2 when the phytoplankton were dominated by diatoms (?70%) or P. antarctica (+35%). The ability to bloom later in the season afforded P. antarctica a relatively greater role than diatoms in controlling the air-sea flux of CO2 in the Ross Sea. In response to alleviation of Fe limitation, both total Ross Sea NPP and CO2 uptake increased by 30%. The response of the carbon cycle to Fe fertilization was predicted to be complex, and its magnitude and nature were dictated by patterns of macronutrient utilization.
机译:我们提出了新的模型结果,研究了罗斯海内的养分和碳生物地球化学,重点是生态系统动力学对分类群特有的养分利用参数的敏感性以及减轻浮游植物生长的铁限制的影响。修改了罗斯海的冰海-海洋耦合生态系统(CIAO)模型,以包括主要浮游植物类群的海气CO2交换和非雷德菲尔德C / N / P吸收比。模型结果表明,罗斯海是大气中CO2的主要吸收源,这是由于开始出现铁限制之前的高初级生产力所致。特定于分类群的C / N / P吸收比控制每种常量营养素的相对去除速率,而Fe的可用性限制了绝对利用率。当将Redfield C / N / P化学计量法同时应用于浮游植物类群时,净高初级生产力(NPP)在通常由硅藻为主的地区被高估,而在南极菲氏囊藻的优势地区却被低估,而宏观营养素动态则被错误地描述。当浮游植物以硅藻(≥70%)或南极假单胞菌(+ 35%)为主导时,浮游植物分类学组成的模拟变化显着改变了大气二氧化碳的吸收。该季节后期开花的能力使南极假单胞菌在控制罗斯海中的CO2气海通量方面比硅藻具有相对更大的作用。为了缓解铁的限制,罗斯海的总NPP和二氧化碳吸收量均增加了30%。碳循环对铁肥的响应被认为是复杂的,其数量和性质由大量养分利用模式决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号