...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Height profiles of the ionospheric electron density derived using space-based remote sensing of UV and X ray emissions and EISCAT radar data: A ground-truth experiment
【24h】

Height profiles of the ionospheric electron density derived using space-based remote sensing of UV and X ray emissions and EISCAT radar data: A ground-truth experiment

机译:使用紫外线和X射线发射的天基遥感以及EISCAT雷达数据得出的电离层电子密度的高度剖面:真实实验

获取原文
获取原文并翻译 | 示例

摘要

In this study we have derived height profiles of the ionospheric electron density N e using remote sensing of UV and X-ray emissions from the Polar satellite and EISCAT radar data. The latter technique gives the most accurate determination of N e providing a means to ground-truthing the satellite imaging measurements. The UV-emission data are taken from the Ultraviolet Imager (UVI) on Polar, while the X-ray data are measured by the Polar Ionospheric X-ray Imaging Experiment (PIXIE). As UVI yields a far better resolution in time and space than PIXIE, our primary approach involves UVI and EISCAT data. For a substorm event occurring on 24 March 1998, we derive N e?UVI profiles valid in the E region above ~105 km. By comparing with simultaneous N e?EISCAT values, we find that the two techniques match fairly well in many cases. The altitude of maximum electron density is usually below 110 km. A few cases reveal N e?EISCAT maxima in the upper E region (130–150 km), indicating a very soft precipitating electron energy spectrum. During such conditions, we observe the largest discrepancies between the N e?UVI and N e?EISCAT profiles. This may reflect the difficulty of obtaining proper energy characteristics from UV emissions, when the mean electron energy is less than ~2 keV. A recalculation of these N e?UVI values has been performed, requiring that the altitudes of the N e?UVI maximum must match the altitudes of the N e?EISCAT maximum. The results reveal a much better agreement between the two data sets, suggesting that UVI is measuring about the same energy flux as EISCAT. Even though the modified N e?UVI values deviate strongly from the old N e?UVI profiles, the effects on the Pedersen conductance, Σ P , are insignificant. Also, we find that Σ P?UVI are within ±30% of Σ P?EISCAT for 15 of 18 cases, suggesting that remote sensing of UV-emissions provide a fairly reliable tool to monitor the Pedersen conductance. We have investigated a second approach by including PIXIE X-ray data to derive N e?UVI + PIXIE values valid in the whole E region and upper D region. Despite the coarse PIXIE resolution, we observe a fairly good match with the N e?EISCAT profiles. By calculating the Hall and Pedersen conductances, Σ H and Σ P , we find that the values derived from satellite imaging measurements are within ±25% of the EISCAT values for all four cases, supporting the space-based remote sensing technique to investigate the ionospheric electrodynamics. The results presented in this study suggest that the procedures developed to derive N e values from the satellite imaging measurements are reliable. We also find that the N e?UVI and N e?UVI+PIXIE values on average are slightly larger (5 and 13%) than the N e?EISCAT values. These discrepancies may be caused by the difference in resolution between the satellite remote sensing data and the radar data, as smoothing of discrete precipitation may result in an overestimation of N e .
机译:在这项研究中,我们利用极地卫星和EISCAT雷达数据对紫外线和X射线发射的遥感,推导出了电离层电子密度N e的高度剖面。后一种技术可以最准确地确定N e,从而为卫星成像测量提供地面手段。紫外线发射数据来自Polar上的紫外线成像仪(UVI),而X射线数据则由Polar电离层X射线成像实验(PIXIE)测量。由于UVI在时间和空间上比PIXIE产生更好的分辨率,因此我们的主要方法涉及UVI和EISCAT数据。对于1998年3月24日发生的一次亚暴事件,我们推导出在〜105 km以上E区有效的N e?UVI剖面。通过与同时的e eEISCAT值进行比较,我们发现这两种技术在许多情况下都非常匹配。最大电子密度的高度通常低于110 km。少数情况揭示了E上部(130-150 km)的N e?EISCAT最大值,表明非常软的沉淀电子能谱。在这种情况下,我们观察到N e?UVI和N e?EISCAT曲线之间的最大差异。这可能反映了当平均电子能量小于〜2 keV时,很难从紫外线发射中获得合适的能量特性。已经对这些NeΔUVI值进行了重新计算,要求NeΔUVI最大值的高度必须与NeΔEISCAT最大值的高度匹配。结果表明,两个数据集之间的一致性更好,这表明UVI测量的能量通量与EISCAT大致相同。即使修改后的N e?UVI值与旧的N e?UVI曲线有很大的偏离,对Pedersen电导ΣP的影响也很小。此外,我们发现18个案例中有15个案例的ΣP?UVI在ΣP?EISCAT的±30%以内,这表明对紫外线发射的遥感提供了一个相当可靠的工具来监视Pedersen电导。我们研究了包括PIXIE X射线数据在内的第二种方法,以得出在整个E区和上D区有效的N e?UVI + PIXIE值。尽管PIXIE分辨率较差,但我们观察到与N e?EISCAT配置文件相当匹配。通过计算霍尔和Pedersen电导ΣH和ΣP,我们发现从卫星成像测量得出的所有四种情况下的值都在EISCAT值的±25%以内,支持基于空间的遥感技术来研究电离层电动力学。这项研究提出的结果表明,从卫星成像测量中得出N e值的程序是可靠的。我们还发现,N e?UVI和N e?UVI + PIXIE值平均比N e?EISCAT值稍大(5%和13%)。这些差异可能是由卫星遥感数据和雷达数据之间的分辨率差异引起的,因为离散降水的平滑可能导致N e的高估。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号