首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Polar cap electron density distribution from IMAGE radio plasma imager measurements: Empirical model with the effects of solar illumination and geomagnetic activity
【24h】

Polar cap electron density distribution from IMAGE radio plasma imager measurements: Empirical model with the effects of solar illumination and geomagnetic activity

机译:来自IMAGE无线电等离子成像仪测量的极帽电子密度分布:具有太阳光照和地磁活动影响的经验模型

获取原文
获取原文并翻译 | 示例
           

摘要

We present a statistical study of the relative importance of solar illumination and geomagnetic activity dependences of the electron density (N e) distribution in the polar cap magnetosphere based on 5 years of electron density measurements made by the radio plasma imager (RPI) on board the IMAGE spacecraft. This study covers a geocentric distance of R = 1.4–5.0 R E , and the polar cap is defined by an empirical boundary model that takes into account the dynamic nature of the location and size of the polar cap. The RPI N e data show that the electron density distribution within the polar cap depends on the geocentric distance, R, geomagnetic activity level, e.g., measured by the Kp index, and solar illumination (solar zenith angle) at the footprints of the geomagnetic field lines. Our analysis of RPI N e data shows that although an increase in geomagnetic activity leads to an enhanced N e, the enhancement is found to be altitude-dependent such that it is most pronounced at higher altitudes and less significant at lower altitudes. At geocentric distance of R = 4.5 R E , an increase in the geomagnetic activity level from Kp < 2 to ~5 results in an N e increase by a factor of ~5. On the other hand, the observations show a strong solar illumination control of N e at lower altitudes and not at higher. RPI N e data show that at geocentric distance of about 2 R E in the polar cap, the average N e is larger on the sunlit side than on the darkside by a factor of 3–4 for both quiet and disturbed conditions. At geocentric distance of R ≈ 2.5 R E the effects of these two factors on N e appear to be comparable. Similar to previous polar cap density models, the new empirical model of N e developed in this study takes the form of a power law. While in the previous N e functional representations the power index is a constant, the power index in our representation of N e distribution is a function of Kp and solar zenith angle.
机译:我们基于对射极等离子体磁层(RPI)进行的5年电子密度测量,对太阳照度的相对重要性和极地磁层中电子密度(N e)分布的地磁活动依赖性进行了统计研究。 IMAGE航天器。这项研究涵盖了一个地心距离R = 1.4–5.0 R E,极地盖是由一个经验边界模型定义的,该模型考虑了极地盖的位置和大小的动态特性。 RPI N e数据显示,极帽内的电子密度分布取决于地心距离,R,地磁活动水平(例如,通过Kp指数测量)以及地磁场足迹处的太阳照度(太阳天顶角)线。我们对RPI N e数据的分析表明,尽管地磁活动的增加会导致N e增强,但发现这种增强取决于海拔高度,因此在较高的海拔高度最明显,而在较低的海拔高度则不那么明显。在地心距R = 4.5 R E时,地磁活动水平从Kp <2增大到〜5,导致N e增加〜5。另一方面,观测结果表明在较低高度而不是较高高度,强烈控制了N e的太阳照度。 RPI N e数据显示,在极地帽的地心距约为2 R E的情况下,在安静和受干扰的条件下,日照侧的平均N e比暗侧的平均N e大3-4倍。在地心距R≈2.5 R E时,这两个因素对N e的影响似乎是可比的。与以前的极地线密度模型相似,本研究中开发的新的N e经验模型采用幂定律的形式。在前面的N e函数表示中,功率指数是一个常数,而在我们的N e分布表示中,功率指数是Kp和太阳天顶角的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号