...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: An integrated investigation during geomagnetic storm times
【24h】

Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: An integrated investigation during geomagnetic storm times

机译:地球同步轨道上相对论电子相空间密度的多卫星测定:地磁风暴期间的综合研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An integrated investigation method, which can study the relativistic electron phase space density distribution and check the reliability of employed magnetic field models simultaneously, is developed and applied to the geosynchronous orbit region for 53 geomagnetic storms during a ~190-d period. First, to test how the magnetospheric magnetic field affects the study of phase space density, two approaches are taken on handling the magnetic field model: One is to use an existing empirical model through the whole storm period; the other is to select one from a list of existing magnetic field models for each time bin during the period by fitting to multipoint in situ measurements. The magnetic field models in both approaches are again tested by Liouville's theorem, which requires the conserved phase space density for fixed phase space coordinates given no local losses and sources. Then on the basis of the selected magnetic field model, the phase space density is calculated by transforming the flux data from three Los Alamos National Laboratory geosynchronous satellites. By following the procedure developed here and using the cross-satellite calibration achieved in previous work, we deduce the storm time electron phase space density distribution for the region near geosynchronous orbit, covering a range of L shells with L* centered ~6. This work establishes the radial phase space density gradient at constant adiabatic invariants as a function of universal time during storm times, and three types of geomagnetic storms are defined according to the degree of energy-dependent enhancements of energetic electrons during recovery phases. Initial results from this study suggest a source outside geosynchronous orbit for low-energy electrons and a major source inside for high-energy electrons.
机译:开发了一种可以研究相对论性电子相空间密度分布并同时检查所用磁场模型的可靠性的综合研究方法,并将其应用于〜190 d期间53次地磁风暴的地球同步轨道区域。首先,为了测试磁层磁场如何影响相空间密度的研究,采用了两种方法来处理磁场模型:一种是在整个暴风雨期间使用现有的经验模型;另一种是使用现有的经验模型。另一种方法是,通过适应多点原位测量,在一段时间内从每个时间段的现有磁场模型列表中选择一个。两种方法中的磁场模型均由Liouville定理进行了测试,该定理要求在没有局部损耗和源的情况下,固定相空间坐标的守恒相空间密度。然后,根据所选的磁场模型,通过转换来自美国洛斯阿拉莫斯国家实验室的三颗地球同步卫星的通量数据,计算出相空间密度。通过遵循此处开发的程序并使用先前工作中实现的跨卫星校准,我们推导出了地球同步轨道附近区域的风暴时间电子相空间密度分布,覆盖了L *中心为〜6的L个壳。这项工作建立了恒定绝热常数下径向相空间密度梯度,作为暴风雨时间世界时间的函数,根据恢复阶段高能电子依赖能量的增强程度,定义了三种类型的地磁暴风。这项研究的初步结果表明,地球同步轨道外的一个低能电子源和一个内部高能电子的主要源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号