首页> 外文期刊>Journal of Geochemical Exploration: Journal of the Association of Exploration Geochemists >Mineralogical and geochemical characteristics of scheelite-bearing skarns, and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India
【24h】

Mineralogical and geochemical characteristics of scheelite-bearing skarns, and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India

机译:白蜡岩矽卡岩的矿物学和地球化学特征,以及矽卡岩矿化和相关的花岗岩类岩体成岩作用之间的遗传关系,印度东部的桑德加尔地区

获取原文
获取原文并翻译 | 示例
       

摘要

Skarn rocks occur at the contact between calcite-bearing dolomitic marbles and granitoids (massive varieties with pegmatites) in close spatial association with the mica schist-hosted Proterozoic Pb-Cu-Ag sulfide deposits at Sargipali, Sundergarh District, Eastern India. The exoskarn (pyroxene-garnet) of variable width (1 to 30 m) occurs in marble proximal to the granitic intrusion, and endoskarn (pyroxene-epidote) is variably developed.(<1 to 10 m). Molybdenum-free scheelite with minor pyrrhotite (0.2%) is found only in late garnet-clinopyroxene exoskarn assemblages.In the Sargipali area early regional and contact metamorphism converted impure carbonate lithologies to calc-silicate hornfels. Subsequent contact metasomatism formed the skarn rocks, which are well zoned geochemically, mineralogically, and texturally in the sequence pyroxene-garnet-amphibole from the calcite-bearing dolomitic marble to granitoid contact. The presence of zoning relative to igneous contacts indicates that skarn-forming fluids originated from the crystallizing magma. The skarns are composed of clinopyroxene, garnet, calcic amphiboles (K-rich ferropargasite, ferrohornblende, hastingsite, tschermakite, magnesiohornblende, and actinolite), wollastonite, plagioclase, potash feldspar, epidote, titanite, and quartz. The skarns are notably enriched in Al, Mg, and Fe. Garnets are grossularite-almandine with 9 to 10 mol% spessartine, whereas pyroxenes are hedenbergitic to diopsidic in composition. The variable Mg:Mn:Fe proportions in the skarn clinopyroxene suggest the formation of clinopyroxene compositions from relatively homogeneous fluids, which experienced local variations in their Mg:Mn:Fe proportion instead of from successively different compositions.The earliest hornfels assemblage (Stage I) formed initially above 500 °C. This was overprinted by prograde anhydrous skarn (Stage II) at about 500°C-600 °C and of 3-4 kbar pressure in a mildly reducing environment under X(CO2) = ~0.18. With increasing fluid/rock interaction, epidote, green amphibole± quartz-bearing retrograde skarn (Stage III) formed as temperature decreased to approximately 480 °C at X (CO2) = 0.05. Late hydrothermal alteration (Stage IV) caused the formation of actinolite. There is a correlation between intrusion composition and the metal contents of associated skarns. Calc-silicate mineral compositions in the Sargipali skarns are similar to those in other W skarn systems. This granitic complex is comprised of reduced, highly evolved, and metallogenically specialized S-type leucogranites, comparable to those commonly associated with Mo-poor W skarns. A syn-collisional tectonic setting is proposed, based on field evidence, the relative timing of the intrusions with respect to metasedimentary and carbonate rocks, and empirical trace-element geochemical evidence. Based on field evidence and geochemistry, two main intrusive phases have been recognized in the Sargipali granitoid pluton: (1) an undeformed massive granite in the west, and (2) a foliated granite along the eastern margin. Porphyritic granites are also recognized locally, which are older than the other units. A genetic link exists between granite magmatism, and the formation of pegmatites in the region. The granite-pegmatite system is highly peraluminous (Al-saturation index ranges from 1.2 to 1.8). The peraluminous character increases from the foliated and porphyritic granite through massive granite to pegmatite. The foliated granite has higher FeO~t, TiO2, MgO, Ba, Sr, Zr, Th, Σ REE (-200 ppm), and lower SiO2 contents than massive granite (Σ REE = -22 ppm). Both of these granite phases are highly evolved, while the massive variety is more evolved, and is mostly dominated by variable source rock composition. The minimum crystallization temperature of granite magma is at 628°C-695 °C and greater than the 3 kbar pressure.The granites may have been generated by partial melting of metasedimentary rocks of the Gangpur Group that might
机译:矽卡岩岩石发生在方解石状白云岩大理石和花岗岩(大量含伟晶岩)之间的接触处,与印度东部Sundergarh区Sargipali的云母片岩片状元古代Pb-Cu-Ag硫化物矿床密切相关。变宽(1到30 m)的外骨骼(py-石榴石)发生在花岗岩侵入附近的大理石中,内生矽卡岩(py-pid草)可变地发展(<1到10 m)。仅在晚石榴石-斜辉石外骨骼组合中发现了不含钼的白钨矿和少量的黄铁矿(0.2%)。在Sargipali地区早期的区域和接触变质作用将不纯的碳酸盐岩性转变为钙硅酸盐角铁。随后的接触交代作用形成了矽卡岩岩层,从含方解石的白云石大理石到花岗岩的接触,在化学,矿物学和质地上都按辉石-石榴石-闪石的顺序进行了合理划分。相对于火成岩接触带的存在表明矽卡岩形成流体起源于结晶岩浆。矽卡岩由斜生辉石,石榴石,钙两闪石(富含钾的亚铁辉石,亚铁角闪石,黑闪石,斜方晶石,镁角闪石和阳起石),硅灰石,斜长石,钾长石,石英,钛铁矿和钛铁矿组成。矽卡岩中富含Al,Mg和Fe。石榴石是具有9至10摩尔%的倍半胱氨酸的钙长石-金刚烷,而辉石的组成从正二十足体到二足纲。矽卡岩斜py中可变的Mg:Mn:Fe比例表明斜relatively中的组成是由相对均质的流体形成的,它们的Mg:Mn:Fe比例发生了局部变化,而不是依次不同的组成。最早的角f组合(阶段I)最初在500°C以上形成。在X(CO2)=〜0.18的轻度还原环境中,在大约500°C-600°C和3-4 kbar压力下,用无水矽卡岩(第二阶段)进行套印。随着流体/岩石相互作用的增加,在温度X(CO2)= 0.05时,随着温度降低到约480°C,形成了绿色的闪石,带绿色闪石的逆生矽卡岩(阶段III)。后期热液蚀变(第四阶段)引起阳起石的形成。入侵成分与相关矽卡岩的金属含量之间存在相关性。 Sargipali矽卡岩中的钙硅酸盐矿物组成与其他W矽卡岩系统中的类似。这种花岗石复合物由还原的,高度演化的和成矿专门化的S型无色花岗岩组成,可与通常与贫钼W矽卡岩相关的那些相比。基于野外证据,侵入沉积相对于准沉积和碳酸盐岩的相对时间,以及经验性痕量地球化学证据,提出了一种同碰撞构造环境。根据现场证据和地球化学,已在Sargipali花岗岩类岩体中识别出两个主要的侵入相:(1)西部未变形的块状花岗岩,和(2)东部边缘的片状花岗岩。斑岩质花岗岩在当地也被认可,其年龄比其他单元要老。花岗岩岩浆作用与该地区伟晶岩的形成之间存在遗传联系。花岗岩-透钙辉石系统是高铝质的(Al饱和指数范围为1.2到1.8)。从叶状和斑状花岗岩到块状花岗岩再到伟晶岩,其高铝质特征逐渐增强。片状花岗岩比块状花岗岩(ΣREE = -22 ppm)具有较高的FeO〜t,TiO2,MgO,Ba,Sr,Zr,Th,ΣREE(-200 ppm),并且SiO2含量较低。这两个花岗岩阶段都是高度演化的,而大量的花岗岩则演化得更多,并且主要由可变的烃源岩成分主导。花岗岩岩浆的最低结晶温度在628°C-695°C且高于3 kbar压力。花岗岩可能是由于Gangpur组的准沉积岩部分熔融而产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号