...
首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >Numerical Modeling and Validation of Supersonic Two-Phase Flow of CO_2 in Converging-Diverging Nozzles
【24h】

Numerical Modeling and Validation of Supersonic Two-Phase Flow of CO_2 in Converging-Diverging Nozzles

机译:收敛-发散喷嘴中CO_2的超音速两相流数值模拟与验证

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon dioxide is an attractive alternative to conventional refrigerants due to its low direct global warming effects. Unfortunately, CO_2 and many alternative refrigerants have lower thermodynamic performance resulting in larger indirect emissions. The effective use of ejectors to recover part of the lost expansion work, which occurs in throttling devices, can close this performance gap and enable the use of CO_2. In an ejector, the pressure of the motive fluid is converted into momentum through a choked converging-diverging nozzle, which then entrains and raises the energy of a lower-momentum suction flow. In a two-phase ejector, the motive nozzle flow is complicated by the nonequilibrium phase change affecting local sonic velocity and leading to various types of shockwaves, pseudo shocks, and expansion waves inside or outside the exit of the nozzle. Since the characteristics of the jet leaving the motive nozzle greatly affect the performance of the ejector, this paper focuses on the details of flow development and shockwave interaction within and just outside the nozzle. The analysis is based on a high-fidelity model that incorporates real-fluid properties of CO_2, local mass and energy transfer between phases, and a two-phase sonic velocity model in the presence of finite-rate phase change. The model has been validated against the literature data for two-phase supersonic nozzles and overall ejector performance data. The results show that due to nonequilibrium effects and delayed phase change, the flow can choke well downstream of the minimum-area throat. In addition, Mach number profiles show that, although phase change is at a maximum near the boundaries, the flow first becomes supersonic in the interior of the flow where sound speed is lowest. Shock waves occurring within the nozzle can interact with the boundary layer flow and result in a 'shock train' and a sequence of subsonic and supersonic flow previously observed in single-phase nozzles. In cases with lower nozzle back pressure, the flow continues to accelerate through the nozzle and the exit pressure adjusts in a series of supersonic expansion waves.
机译:二氧化碳由于其直接的全球变暖效应低,是常规制冷剂的一种有吸引力的替代品。不幸的是,CO_2和许多替代制冷剂的热力学性能较低,从而导致较大的间接排放。有效使用喷射器来恢复节流装置中发生的膨胀工作损失的一部分,可以弥补这一性能差距,并能够使用CO_2。在喷射器中,动力流体的压力通过节流的收敛-发散喷嘴转换为动量,然后夹带并提高了较低动量吸入流的能量。在两相喷射器中,动力喷嘴的流动会因非平衡相变而变得复杂,这会影响局部声速并导致喷嘴出口内外的各种冲击波,伪冲击和膨胀波。由于离开动力喷嘴的喷射特性极大地影响了喷射器的性能,因此本文着重研究喷嘴内部和外部的流动发展和冲击波相互作用的细节。该分析基于高保真度模型,该模型结合了CO_2的真实流体特性,相之间的局部质量和能量传递以及存在有限速率相变的两相声速模型。该模型已针对两相超音速喷嘴的文献数据和整体喷射器性能数据进行了验证。结果表明,由于非平衡效应和延迟的相变,流动可以在最小面积喉咙的下游很好地阻塞。另外,马赫数曲线表明,尽管相变在边界附近最大,但是在声速最低的流内部,流首先成为超音速的。喷嘴内发生的冲击波可以与边界层流相互作用,并导致“冲击波”以及先前在单相喷嘴中观察到的一系列亚音速和超音速流。在喷嘴背压较低的情况下,流量继续通过喷嘴加速,出口压力会在一系列超音速膨胀波中进行调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号