首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >Vortical Structures and Instability Analysis for Athena Wetted Transom Flow with Full-Scale Validation
【24h】

Vortical Structures and Instability Analysis for Athena Wetted Transom Flow with Full-Scale Validation

机译:雅典娜湿式尾气流动的涡流结构和不稳定性分析,具有全面验证

获取原文
获取原文并翻译 | 示例
           

摘要

Vortical structures and associated instabilities of appended Athena wetted transom flow in full-scale conditions are studied using DES to explain the source of dominant transom flow frequency, including verification and validation using full-scale experimental data. The results are also compared with model-scale bare and appended hull predictions and experiments. The grid used for the validation is sufficiently fine as it resolves 70percent and 91percent of the experimental inertial subrange and turbulent kinetic energy values, respectively. The model-scale bare and appended hull resistance predictions compare within 2.5percentD and 5.4(percent)D of the experimental data D, respectively. The full-scale appended hull resistance predictions compare within 4.2(percent)D of the extrapolated data using the ITTC line. The averaged comparison error of the full-scale transom wave elevation mean, RMS and dominant frequency predictions and the experimental data is 8.1(percent)D, and the predictions are validated at an averaged 11.2(percent)D interval. The transom wave elevation unsteadiness is attributed to the Karman-like transom vortex shedding as both show the same dominant frequency. The Karman-like instability shows St velence 0.148 for the bare hull and St velence 0.103 +- 4.4percent for model- and full-scale appended hull. The appended hull simulations also predict: horseshoe vortices at the juncture of rudder-hull with St velence 0.146 +- 3.9percent and strut-hull with St velence 0.053 +- 2percent; shear layer instability at the strut-hull intersection with St velence 0.0067 +- 3percent; and unsteady sinkage and trim induced by transom vortex shedding with St velence 2.19. The instabilities do not show significant variation on scale, propeller or motions. The bare hull simulation also predicts flapping-like instability in the wake with St velence 0.144.
机译:使用DES研究了在整个尺度条件下附加的雅典娜润湿的横梁流的涡流结构和相关的不稳定性,以解释主要横梁流频率的来源,包括使用完整的实验数据进行验证和确认。还将结果与模型规模的裸机和附加的船体预测和实验进行比较。用于验证的网格足够精细,因为它分别解析了实验惯性子范围和湍动能值的70%和91%。模型规模的裸机和附加的船体阻力预测分别在实验数据D的2.5%D和5.4%D之内进行比较。使用ITTC线,将完整的附加船体阻力预测值与外推数据的4.2%D之内进行比较。满刻度横波高程平均值,RMS和主导频率预测的平均比较误差以及实验数据为8.1%D,并且这些预测在平均11.2%D间隔内得到验证。横梁波高程的不稳定性归因于像Karman一样的横梁涡旋脱落,因为两者都显示出相同的主导频率。类似于卡曼的不稳定性显示,裸壳的St velence为0.148,模型和全尺寸附加船体的St velence为0.103 +-4.4%。附加的船体模拟还预测:舵船体交界处的马蹄涡度为St velence的0.146±-3.9%,strut-stull船体的St velence为0.053 +/- 2%;撑杆-船体相交处的剪力层失稳度为Stvelence 0.0067±3%; St velence 2.19引起的尾部涡旋脱落引起的不稳定沉降和修剪。不稳定性在比例尺,螺旋桨或运动方面没有显示出明显的变化。裸露船体仿真还可以预测St velence为0.144时尾随扑动的不稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号