...
首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >Investigation of the Flow Field on a Transonic Turbine Nozzle Guide Vane With Rim Seal Cavity Flow Ejection
【24h】

Investigation of the Flow Field on a Transonic Turbine Nozzle Guide Vane With Rim Seal Cavity Flow Ejection

机译:轮辋密封腔射流的跨音速涡轮喷嘴导流叶片的流场研究

获取原文
获取原文并翻译 | 示例
           

摘要

Ensuring an adequate life of high pressure turbines requires efficient cooling methods such as rim seal flow ejection from the stator-rotor wheel space cavity interface, which prevents hot gas ingress into the rotor disk. The present paper addresses the potential to improve the efficiency in transonic turbines at certain rim seal ejection rates. To understand this process, a numerical study was carried out, combining computational fluid dynamic (CFD) simulations and experiments on a single stage axial test turbine. The three dimensional steady CFD analysis was performed, modeling the purge cavity flow ejected downstream of the stator blade row at three flow regimes: subsonic M_(2) velence 0.73, transonic M_(2) velence 1.12, and supersonic M_(2) velence 1.33. Experimental static pressure measurements were used to calibrate the computational model. The main flow field-purge flow interaction is found to be governed by the vane shock structures at the stator hub. The interaction between the vane shocks at the hub and the purge flow has been studied and quantitatively characterized as a function of the purge ejection rate. The ejection of 1percent of the core flow from the rim seal cavity leads to an increase in the hub static pressure of approximately 7percent at the vane trailing edge. This local reduction of the stator exit Mach number decreases the trailing edge losses in the transonic regime. Finally, a numerically predicted loss breakdown is presented, focusing on the relative importance of the trailing edge losses, boundary layer losses, shock losses, and mixing losses, as a function of the purge rate ejected. Contrary to the experience in subsonic turbines, results in a transonic model demonstrate that ejecting purge flow improves the vane efficiency due to the shock structure modification downstream of the stator.
机译:要确保高压涡轮机有足够的使用寿命,就需要有效的冷却方法,例如从定子-转子叶轮空间腔体界面喷出轮辋密封流,以防止热气体进入转子盘。本文探讨了在某些轮辋密封件喷射速率下提高跨音速涡轮机效率的潜力。为了理解此过程,进行了数值研究,将计算流体动力学(CFD)模拟与单级轴向测试涡轮机上的实验相结合。进行了三维稳态CFD分析,对在以下三种流动状态下定子叶片排下游喷射的吹扫腔流进行了建模:亚音速M_(2)velence 0.73,跨音速M_(2)velence 1.12和超音速M_(2)velence 1.33 。实验静压测量值用于校准计算模型。发现主要的流场-吹扫流相互作用受定子毂处的叶片冲击结构支配。已经研究了轮毂处的叶片冲击与吹扫流量之间的相互作用,并将其定量表征为吹扫喷射速率的函数。从轮辋密封腔中喷出1%的芯流会导致轮毂静压在叶片后缘增加约7%。定子出口马赫数的这种局部减小减小了跨音速状态下的后缘损耗。最后,给出了一个数值预测的损失分解,重点是后缘损失,边界层损失,冲击损失和混合损失的相对重要性,这些影响是所排出的吹扫速率的函数。与亚音速涡轮机的经验相反,跨音速模型的结果表明,由于定子下游的冲击结构发生了变化,喷射吹扫流提高了叶片效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号