首页> 外文期刊>Journal of Fluids and Structures >Assessment of PIV-based unsteady load determination of an airfoil with actuated flap
【24h】

Assessment of PIV-based unsteady load determination of an airfoil with actuated flap

机译:评估基于PIV的襟翼致动襟翼的非稳态载荷

获取原文
获取原文并翻译 | 示例
           

摘要

For complex experimental setups involving movable structures it is not trivial to directly measure unsteady loads. An alternative is to deduce unsteady loads indirectly from measured velocity fields using Noca's method. The ultimate aim is to use this method in future work to determine unsteady loads for fluid-structure interaction problems. The focus in this paper is first on the application and assessment of Noca's method for an airfoil with an oscillating trailing edge flap. To our best knowledge Noca's method has not been applied yet to airfoils with moving control surfaces or fluid-structure interaction problems. In addition, wind tunnel corrections for this type of unsteady flow problem are considered. The experiment is performed in a closed wind tunnel with a wing with a chord of 0.5 m and a 0.2c trailing edge flap at a Reynolds number of Re = 700 000. The reduced frequencies of the flap are k=0.1 and k=0.2, whereas the mean flap deflections and amplitudes are 1° or 3°. Velocity fields are obtained with planar particle image velocimetry (PIV) and Noca's method is evaluated at multiple contours along the airfoil. The resulting unsteady loads are compared with loads obtained with Kutta-Joukowski's theorem applied to the experimental data and 2-D panel simulations with mimicked wind tunnel walls. Conclusion is that Noca's approach is relatively sensitive to the contour location and shows small offsets in the force coefficients. Using the experimental data, Noca's momentum flux equation applied to a set of contours gives a mean solution of the unsteady loads with an error bandwidth on average 6.39% of its mean value. The mean aerodynamic forces are slightly underpredicted, on average of about 5%. Among others, a higher resolution of the experimental data and more accurate approximations of velocity gradients will improve the force prediction. Phase and amplitude of the lift confirm 2-D panel computations including modeled wind tunnel walls and a gap correction.
机译:对于涉及可移动结构的复杂实验装置,直接测量不稳定载荷并非易事。一种替代方法是使用Noca方法从测得的速度场间接推导出非稳态载荷。最终目的是在将来的工作中使用这种方法来确定流体-结构相互作用问题的非稳态载荷。本文的重点首先在于Noca方法在具有后缘摆动襟翼的机翼上的应用和评估。据我们所知,Noca的方法尚未应用于控制面移动或流固耦合问题的机翼。此外,还考虑了针对这种非恒定流问题的风洞校正。实验是在一个封闭的风洞中进行的,该风洞的翼弦为0.5 m,后缘襟翼为0.2c,雷诺数为Re = 700000。襟翼的降低频率为k = 0.1和k = 0.2,而平均襟翼偏转和振幅为1°或3°。使用平面粒子图像测速仪(PIV)获得速度场,并沿机翼的多个轮廓评估Noca方法。将所得的非稳态载荷与通过Kutta-Joukowski定理应用于模拟风洞墙的实验数据和二维面板模拟所获得的载荷进行比较。结论是Noca的方法对轮廓位置相对敏感,并且显示出较小的力系数偏移。使用实验数据,将Noca的动量通量方程应用于一组轮廓,可以得出非稳态载荷的平均解,其误差带宽平均为其平均值的6.39%。平均空气动力略有不足,平均约为5%。其中,更高分辨率的实验数据和更精确的速度梯度近似值将改善力的预测。升力的相位和幅度确定了二维面板计算,包括建模的风洞壁和间隙校正。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号