首页> 外文期刊>Journal of Fluids and Structures >Methods for numerical study of tube bundle vibrations in cross-flows
【24h】

Methods for numerical study of tube bundle vibrations in cross-flows

机译:横流管束振动数值研究的方法

获取原文
获取原文并翻译 | 示例
           

摘要

In many industrial applications, mechanical structures like heat exchanger tube bundles are subjected to complex flows causing possible vibrations and damage. Part of fluid forces are coupled with tube motion and the so-called fluid-elastic forces can affect the structure dynamic behaviour generating possible instabilities and leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics, numerical simulation of flow-induced vibrations is now practicable for industrial purposes. The present paper is devoted to the numerical identification of fluid-elastic effects affecting tube bundle motion in presence of fluid at rest and one-phase cross-flows. What is the numerical process? When fluid-elastic effects are not significant and are restricted to added mass effects, there is no strong coupling between structure and fluid motions. The structure displacement is not supposed to affect flow patterns. Thus it is possible to solve flow and structure problems separately by using a fixed nonmoving mesh for the fluid dynamic computation. Power spectral density and time record of lift and drag forces acting on tube bundles can be computed numerically by using an unsteady fluid computation involving for example a large Eddy simulation. Fluid force spectra or time record can then be introduced as inlet conditions into the structure code providing the tube dynamic response generated by flow. Such a computation is not possible in presence of strong flow structure coupling. When fluid-elastic effects cannot be neglected, in presence of tube bundles subjected to cross-flows for example, a coupling between flow and structure computations is required. Appropriate numerical methods are investigated in the present work. The purpose is to be able to provide a numerical estimate of the critical flow velocity for the threshold of fluid-elastic instability of tube bundle without experimental investigation. The methodology consists in simulating in the same time thermohydraulics and mechanics problems by using an arbitrary Lagrange Euler (ALE) formulation for the fluid computation. A fully coupled numerical approach is suggested and applied to the numerical prediction of the vibration frequency of a flexible tube belonging to a fixed tube bundle in fluid at rest or in flow. Numerical results turn out to be consistent with available experimental data obtained in the same configuration. This work is a first step in the definition of a computational process for the full numerical prediction of tube bundle vibrations induced by flows.
机译:在许多工业应用中,诸如热交换器管束之类的机械结构会经受复杂的流动,从而可能引起振动和损坏。流体力的一部分与管的运动耦合在一起,所谓的流体弹力会影响结构的动态行为,从而产生可能的不稳定性,并通过高振幅振动导致可能的短期破坏。大多数经典的流体力识别方法都依赖于与便捷数据处理相关的结构响应实验测量。由于计算流体动力学的最新改进,现在可以将流致振动的数值模拟用于工业用途。本文致力于在流体静止和单相横流作用下影响管束运动的流体弹性效应的数值识别。什么是数值过程?当流体弹性效应不显着且仅限于附加的质量效应时,结构与流体运动之间就没有强耦合。结构位移不应影响流型。因此,通过使用固定的不动网格进行流体动力学计算,可以分别解决流动和结构问题。可以通过使用涉及例如大涡流仿真的非稳态流体计算来数值计算作用在管束上的提升力和阻力的功率谱密度和时间记录。然后可以将流体力谱或时间记录作为入口条件引入结构代码中,以提供由流动产生的管动态响应。在强流动结构耦合的情况下,这种计算是不可能的。当不能忽略流体弹性效应时,例如在存在横流的管束存在时,就需要在流量和结构计算之间进行耦合。在本工作中研究了适当的数值方法。目的是在不进行实验研究的情况下,能够为管束的流体弹性不稳定性阈值提供临界流速的数值估计。该方法包括通过使用任意拉格朗日欧拉(ALE)公式进行流体计算,同时模拟热工和力学问题。提出了一种完全耦合的数值方法,并将其应用于在静止或流动的流体中属于固定管束的挠性管的振动频率的数值预测。数值结果证明与在相同配置中获得的可用实验数据一致。这项工作是定义由流引起的管束振动的完整数值预测的计算过程的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号