首页> 外文期刊>Journal of Fluid Mechanics >Experimental study of physical mechanisms in the control of supersonic impinging jets using microjets
【24h】

Experimental study of physical mechanisms in the control of supersonic impinging jets using microjets

机译:微型射流控制超声速射流物理机理的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Supersonic impinging jet(s) inherently produce a highly unsteady flow field. The Occurrence of such flows leads to many adverse effects for short take-off and vertical landing (STOVL) aircraft such as: a significant increase in the noise level, very high unsteady loads on nearby structures and an appreciable loss in lift during hover. In prior studies, we have demonstrated that arrays of microjets, appropriately placed near the nozzle exit, effectively disrupt the feedback loop inherent in impinging jet flows. In these studies, the effectiveness of the control was found to be strongly dependent on a number of geometric and flow parameters, such as the impingement plane distance, microjet orientation and jet operating conditions. In this paper, the effects of some of these parameters that appear to determine control efficiency are examined and some of the fundamental mechanisms behind this control approach are explored. Through comprehensive two- and three-component velocity (and vorticity) field measurements it has been clearly demonstrated that the activation of microjets leads to a local thickening of the jet shear layer, near the nozzle exit, making it more stable and less receptive to disturbances. Furthermore, microjets generate strong streamwise vorticity in the form of well-organized, counter-rotating vortex pairs. This increase in strearnwise vorticity is concomitant with a reduction in the azimuthal vorticity of the primary jet. Based on these results and a simplified analysis of vorticity transport, it is suggested that the generation of these strearnwise vortices is mainly a result of the redirection of the azimuthal vorticity by vorticity tilting and stretching mechanisms. The emergence of these longitudinal structures weakens the large-scale axisymmetric structures in the jet shear layer while introducing substantial three-dimensionality into the flow. Together, these factors lead to the attenuation of the feedback loop and a significant reduction of flow unsteadiness.
机译:超声冲击射流固有地产生高度不稳定的流场。此类流动的发生会给短距起飞和垂直降落(STOVL)飞机带来许多不利影响,例如:噪音水平显着提高,附近建筑物上的非稳定载荷非常高以及悬停期间的升力明显损失。在先前的研究中,我们已经证明,适当放置在喷嘴出口附近的微型喷嘴阵列可以有效地破坏撞击射流的固有反馈回路。在这些研究中,发现控制的有效性很大程度上取决于许多几何和流量参数,例如撞击平面距离,微射流方向和射流运行条件。在本文中,研究了其中一些参数似乎决定控制效率的效果,并探讨了该控制方法背后的一些基本机制。通过全面的两分量和三分量速度(和涡度)现场测量,已经清楚地证明,微喷的激活会导致喷嘴出口附近的射流剪切层局部增厚,从而使其更稳定且不易受到干扰。此外,微射流以组织良好,反向旋转的涡流对的形式产生强大的沿流涡流。沿横向涡旋性的增加伴随着初级射流的方位涡旋性的降低。根据这些结果和对涡度传输的简化分析,建议这些沿撕裂方向的涡旋的产生主要是由于涡旋倾斜和伸展机制重定向方位涡旋的结果。这些纵向结构的出现削弱了射流剪切层中的大型轴对称结构,同时在流动中引入了实质性的三维性。这些因素共同导致反馈回路的衰减,并显着减少流量不稳定的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号