...
首页> 外文期刊>Journal of Fluid Mechanics >Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity
【24h】

Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity

机译:惯性球体颗粒在固体壁附近的剪切流中的运动,特别应用于微重力下的气溶胶传输

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Trajectories of inertial spheroidal particles moving in a shear flow near a solid wall are calculated numerically from the Stokes flow equations by computing the hydrodynamic forces and torques acting on the particles. Near the wall these interactions cause coupling between the particle's rotational and translational motions. Due to this coupling an inertial spheroid is shown to move along an oscillatory trajectory, while simultaneously drifting towards the wall. This phenomenon occurs in the absence of gravity as a combined effect of three factors: particle non-spherical shape, its inertia and particle-wall hydrodynamic interactions. This drift is absent for inertialess spheroids, and also for inertial spherical particles which move along flow streamlines. The drift velocity is calculated for various particle aspect ratios gamma and relaxation times tau. An approximate solution, valid for small particle inertia is developed, which allows the contribution of various terms to the drift velocity to be elucidated. It was found that the maximum value of the drift velocity prevails for N(gamma)gamma(2 tau)s similar to 4, where s is the shear rate and N(gamma) is a decreasing function of gamma, related to the particle-wall hydrodynamic interactions. In the limiting cases of large and small inertia and also of very long and thin spheroids, the drift vanishes. Possible applications of the results are discussed in the context of transport of micrometre particles in microgravity conditions. It is shown that the model used is applicable for analysis of the deposition of aerosol particles with sizes above 10 mu m inhaled in the human respiratory tract in the absence of gravity. [References: 27]
机译:通过计算作用在颗粒上的流体动力和扭矩,从斯托克斯流方程中数值计算出在固体壁附近剪切流中运动的惯性球形颗粒的轨迹。在壁附近,这些相互作用导致粒子的旋转运动和平移运动之间发生耦合。由于这种耦合,惯性球体显示为沿着振荡轨迹移动,同时朝壁漂移。这种现象是在没有重力的情况下发生的,这是三个因素的综合作用:颗粒非球形,其惯性和颗粒壁流体动力相互作用。对于无惯性球体以及沿流线移动的惯性球形粒子,这种漂移都是不存在的。计算各种粒子长宽比γ和弛豫时间tau的漂移速度。提出了一种对小颗粒惯性有效的近似解,该解可以阐明各种项对漂移速度的影响。发现与(4)相似的N(γ)γ(2 tau)s漂移速度的最大值占主导地位,其中s是剪切速率,N(γ)是γ的递减函数,与粒子相关。墙体流体动力相互作用。在大惯性和小惯性以及非常长和很细的球体的极限情况下,漂移消失了。在微重力条件下运输微米颗粒的背景下讨论了结果的可能应用。结果表明,所使用的模型可用于分析在没有重力的情况下吸入人体呼吸道的粒径大于10μm的气溶胶颗粒的沉积。 [参考:27]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号