...
首页> 外文期刊>Journal of Fluid Mechanics >A NEW MECHANISM OF SMALL-SCALE TRANSITION IN A PLANE MIXING LAYER - CORE DYNAMICS OF SPANWISE VORTICES
【24h】

A NEW MECHANISM OF SMALL-SCALE TRANSITION IN A PLANE MIXING LAYER - CORE DYNAMICS OF SPANWISE VORTICES

机译:平面混合层中小尺度转变的新机制-涡旋的核心动力学。

获取原文
           

摘要

We present a new mechanism of small-scale transition via core dynamics instability (CDI) in an incompressible plane mixing layer, a transition which is not reliant on the presence of longitudinal vortices ('ribs') and which can originate much earlier than rib-induced transition. Both linear stability analysis and direct numerical simulation are used to describe CDI growth and subsequent transition in terms of vortex dynamics and vortex line topology. CDI is characterized by amplifying oscillations of core size non-uniformity and meridional flow within spanwise vortices ('rolls'), produced by a coupling of roll swirl and meridional flow that is manifested by helical twisting and untwisting of roll vortex lines. We find that energetic CDI is excited by subharmonic oblique modes of shear layer instability after roll pairing, when adjacent rolls with out-of-phase undulations merge. Starting from moderate initial disturbance amplitudes, twisting of roll vortex lines generates within the paired roll opposing spanwise flows which even exceed the free-stream velocity. These flows collide to form a nearly irrotational bubble surrounded by a thin vorticity sheath of a large diameter, accompanied by folding and reconnection of roll vortex lines and local transition. We find that accelerated energy transfer to high wavenumbers precedes the development of roll internal intermittency; this transfer, inferred from increased energy at high wavenumbers and an intensification of roll vorticity, occurs prior to the development of strong opposite-signed (to the mean) spanwise vorticity and granularity of the roll vorticity distribution. We demonstrate that these core dynamics are not reliant upon special symmetries and also occur in the presence of moderate-strength ribs, despite entrapment of ribs within pairing rolls. In fact, the roll vorticity dynamics are dominated by CDI if ribs are not sufficiently strong to first initiate transition; thus CDI may govern small-scale transition for moderate initial 3D disturbances, typical of practical situations. Results suggest that CDI constitutes a new generic mechanism for transition to turbulence in shear flows. [References: 43]
机译:我们提出了一种在不可压缩的平面混合层中通过岩心动力学不稳定性(CDI)进行小规模转变的新机制,这种转变不依赖于纵向涡流('ribs')的产生,并且其产生的时间可以早于肋骨-诱导过渡。线性稳定性分析和直接数值模拟都用于描述CDI的增长和随后的涡旋动力学和涡旋线拓扑的过渡。 CDI的特征在于放大跨度涡旋(“辊”)内的核尺寸不均匀性和子午流的振荡,这是由涡旋涡流和子午流的耦合所产生的,这通过涡旋涡流线的螺旋扭曲和解捻来体现。我们发现,当相邻辊之间具有异相起伏合并时,高能CDI受到辊配对后剪切层不稳定性的次谐波倾斜模式的激发。从适度的初始扰动幅度开始,在成对的轧辊中会产生轧辊涡旋线的扭曲,这些轧辊的涡流与翼展方向相反,甚至超过自由流速度。这些流动碰撞形成几乎不旋转的气泡,被大直径的薄涡旋鞘围绕,伴随着涡旋涡旋线的折叠和重新连接以及局部过渡。我们发现,加速能量传递到高波数先于轧辊内部间歇性的发展。由高波数能量增加和侧倾涡度增强推断出的这种转移发生在形成强相反的(相对于平均值)翼展涡度和侧倾涡度分布的粒度之前。我们证明了这些核心动力学并不依赖于特殊的对称性,并且即使在配对辊中肋骨被卡住,也存在中等强度肋骨。实际上,如果肋骨的强度不足以首先开始过渡,则轧制涡旋动力学受CDI支配。因此,CDI可以控制小范围的过渡,以应对中等程度的初始3D干扰(这是实际情况的典型)。结果表明,CDI构成了剪切流中湍流过渡的新通用机制。 [参考:43]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号