首页> 外文期刊>Journal of Fluid Mechanics >On the mechanism of turbulent drag reduction with super-hydrophobic surfaces
【24h】

On the mechanism of turbulent drag reduction with super-hydrophobic surfaces

机译:关于超疏水表面的湍流减阻机理

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanism of turbulent drag reduction (DR) with super-hydrophobic (SH) surfaces is investigated by direct numerical simulation (DNS) and analysis of the governing equations in channel flow. The DNS studies were performed using lattice Boltzmann methods in Channels with 'idealized' SH surfaces on both walls, comprised of longitudinal micro-grooves (MG), transverse MG, or micro-posts. DRs of 5 % to 83 %, -4% to 20%, and 14% to 81% were realized in DNS with longitudinal MG, transverse MG, and micro-posts, respectively. By mathematical. analysis of the governing equations, it is shown that, in SH channel flows with any periodic SH micro pattern on the walls, the magnitude of DR can be expressed as DR = U-slip/U-bulk + O(epsilon), where the first term represents the DR resulting from the effective slip on the walls, and the second term represents the DR or drag increase (DI) resulting from modifications to the turbulence dynamics and any secondary mean flows established in the SH channel compared to a channel flow with no-slip walls at the same bulk Reynolds number as the SH channel. Comparison of this expression to DNS results shows that, with all SH surface micro-patterns studied, between 80% and 100% of the DR in turbulent flow arises from the effective slip on the walls. Modifications to the turbulence dynamics contribute no more than 20% of the total DR with longitudinal MG or micro-posts of high shear-free fraction (SEE), and a DI with transverse MG or micro-posts of moderate SFF. The effect of the SH surface on the normalized dynamics of turbulence is found to be small in all cases, and confined to additional production of turbulence kinetic energy (TKE) within a thin 'surface layer' of thickness of the order of the width of surface micro-indentations. Outside of this 'surface layer', the normalized dynamics of turbulence proceeds as in a turbulent channel flow with no-slip walls at the friction Reynolds number of the SH channel flow.
机译:通过直接数值模拟(DNS)和通道流控制方程的分析,研究了具有超疏水(SH)表面的湍流减阻(DR)机理。 DNS研究是使用格子Boltzmann方法在两个壁上均具有“理想化” SH表面的通道中进行的,该表面由纵向微槽(MG),横向MG或微柱组成。在具有纵向MG,横向MG和微柱的DNS中,DR分别达到5%至83%,-4%至20%和14%至81%的DR。通过数学。对控制方程的分析表明,在壁上具有任何周期性SH微观图案的SH通道流动中,DR的大小可以表示为DR = U-slip / U-bulk + O(epsilon),其中第一项表示壁上有效滑动产生的DR,第二项表示湍流动力学和SH通道中建立的任何次级平均流量(与通道流量相比)的修正所导致的DR或阻力增加(DI)。与SH通道的雷诺数相同的防滑墙。该表达式与DNS结果的比较表明,在研究了所有SH表面微模式后,湍流中DR的80%至100%来自壁上的有效滑移。带有纵向MG或高无剪切分数(SEE)的微柱,湍流动力学的变化贡献不超过总DR的20%,具有横向MG或中度SFF的微柱的DI对湍流动力学的贡献不超过总DR的20%。发现在所有情况下,SH表面对湍流归一化动力学的影响都很小,并且仅限于在厚度约等于表面宽度的薄“表面层”内额外产生湍流动能(TKE)微观压痕。在此“表层”之外,湍流的归一化动力学按湍流通道流动的方式进行,在无通道壁的情况下,湍流通道的流动以SH通道流的雷诺数表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号