首页> 外文期刊>Journal of Fluid Mechanics >Symmetry-plane model of 3D Euler flows and mapping to regular systems to improve blowup assessment using numerical and analytical solutions
【24h】

Symmetry-plane model of 3D Euler flows and mapping to regular systems to improve blowup assessment using numerical and analytical solutions

机译:3D Euler流动的对称平面模型,并映射到常规系统,以使用数值和解析解决方案改善爆破评估

获取原文
获取原文并翻译 | 示例
           

摘要

Motivated by the work on stagnation-point-type exact solutions (with infinite energy) of 3D Euler fluid equations by Gibbon et al. (Physica D, vol. 132 (4), 1999, pp. 497-510) and the subsequent demonstration of finite-time blowup by Constantin (Int. Math. Res. Not. IMRN, vol. 9, 2000, pp. 455-465) we introduce a one-parameter family of models of the 3D Euler fluid equations on a 2D symmetry plane. Our models are seen as a deformation of the 3D Euler equations which respects the variational structure of the original equations so that explicit solutions can be found for the supremum norms of the basic fields: vorticity and stretching rate of vorticity. In particular, the value of the model's parameter determines whether or not there is finite-time blowup, and the singularity time can be computed explicitly in terms of the initial conditions and the model's parameter. We use a representative of this family of models, whose solution blows up at a finite time, as a benchmark for the systematic study of errors in numerical simulations. Using a high-order pseudospectral method, we compare the numerical integration of our 'original' model equations against a 'mapped' version of these equations. The mapped version is a globally regular (in time) system of equations, obtained via a bijective nonlinear mapping of time and fields from the original model equations. The mapping can be constructed explicitly whenever a Beale-Kato-Majda type of theorem is available therefore it is applicable to the 3D Euler equations (Bustamante, Physica D, vol. 240 (13), 2011, pp. 1092-1099). We show that the mapped system's numerical solution leads to more accurate (by three orders of magnitude) estimates of supremum norms and singularity time compared with the original system. The numerical integration of the mapped equations is demonstrated to entail only a small extra computational cost. We study the Fourier spectrum of the model's numerical solution and find that the analyticity strip width (a measure of the solution's analyticity) tends to zero as a power law in a finite time. This is in agreement with the finite-time blowup of the fields' supremum norms, in the light of rigorous bounds stemming from the bridge (Bustamante & Brachet, Phys. Rev. E, vol. 86 (6), 2012, 066302) between the analyticity-strip method and the Beale-Kato-Majda type of theorems. We conclude by discussing the implications of this research on the analysis of numerical solutions to the 3D Euler fluid equations.
机译:由Gibbon等人研究3D Euler流体方程的滞点类型精确解(具有无限能量)的动机。 (《 Physica D》,第132卷,第4卷,1999年,第497-510页),以及后来由康斯坦丁证明的有限时间爆燃(《国际数学评论》,2000年第9卷,第455页) -465),我们介绍了在2D对称平面上的3D Euler流体方程的单参数模型系列。我们的模型被视为3D Euler方程的变形,该变形尊重原始方程的变分结构,因此可以为基本场的最高范本找到明确的解决方案:涡度和涡度拉伸率。特别地,模型参数的值确定是否存在有限时间的爆炸,并且可以根据初始条件和模型参数显式计算奇异时间。我们使用该系列模型的代表作为其对数值模拟误差进行系统研究的基准,该模型的解决方案在有限的时间内爆炸了。使用高阶伪谱方法,我们将“原始”模型方程的数值积分与这些方程的“映射”版本进行了比较。映射版本是一个全局规则的(时间上)方程组,它是通过对原始模型方程的时间和场的双射非线性映射而获得的。只要有Beale-Kato-Majda类型的定理可用,就可以显式构造映射,因此它适用于3D Euler方程(Bustamante,Physica D,第240(13)卷,2011,第1092-1099页)。我们表明,与原始系统相比,映射系统的数值解可导致更精确的(最高三个数量级)估计的规范和奇异时间。证明了映射方程的数值积分仅需要很小的额外计算成本。我们研究了模型数值解的傅立叶谱,发现解析度条带宽度(解的解析度的量度)在有限的时间内趋于为零的幂定律。鉴于桥梁之间严格的界限,这与领域的最高规范的有限时间爆炸相一致(Bustamante&Brachet,Phys。Rev. E,vol。86(6),2012,066302)解析带方法和Beale-Kato-Majda型定理。最后,我们讨论了这项研究对3D欧拉流体方程数值解的分析的意义。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号