...
首页> 外文期刊>Journal of Fluid Mechanics >Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations
【24h】

Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations

机译:通过壁建模的大涡模拟在冲击波/湍流边界层相互作用中的约束效应

获取原文
           

摘要

We present wall-modelled large-eddy simulations (WLES) of oblique shock waves interacting with the turbulent boundary layers (TBLs) (nominal δ_(99) = 5.4 mm and Re_θ ≈ 1.4 × 10~4) developed inside a duct with an almost-square cross-section (45 mm × 47.5 mm) to investigate three-dimensional effects imposed by the lateral confinement of the flow. Three increasing strengths of the incident shock are considered, for a constant Mach number of the incoming air stream M≈2, by varying the height (1.1, 3 and 5 mm) of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes (one near the centre of the duct and three near one of the sidewalls) for the 1.1 and 3 mm-high wedge cases. The instantaneous and time-averaged structure of the flow for the stronger-interaction case (5 mm-high wedge), which shows mean flow reversal, is then investigated. Additional spanwise-periodic simulations are performed to elucidate the influence of the sidewalls, and it is found that the structure and location of the shock system, as well as the size of the separation bubble, are significantly modified by the lateral confinement. A Mach stem at the first reflected interaction is present in the simulation with sidewalls, whereas a regular shock intersection results for the spanwise-periodic case. Low-frequency unsteadiness is observed in all interactions, being stronger for the secondary shock reflections of the shock train developed inside the duct. The downstream evolution of secondary turbulent flows developed near the corners of the duct as they traverse the shock system is also studied.
机译:我们提出了斜壁冲击波与湍流边界层(TBLs)(标称δ_(99)= 5.4 mm和Re_θ≈1.4×10〜4)相互作用的壁模型大涡模拟(WLES)。 -方形横截面(45 mm×47.5 mm),以研究流动的横向约束所产生的三维效应。对于恒定的进入马赫数M≈2,通过改变位于横跨顶部的恒定流向位置的压缩楔的高度(1.1、3和5 mm),可以考虑增加三种入射冲击强度。管道壁成20°角。首先使用1.1毫米和3毫米高楔形情况在几个垂直平面(一个在导管中心附近,三个在一个侧壁附近)获得的粒子图像测速(PIV)实验数据验证仿真结果。然后研究了相互作用较强的情况(5毫米高的楔形)下的瞬时平均时间结构,该结构显示了平均流量逆转。进行了附加的翼展周期模拟,以阐明侧壁的影响,并且发现冲击系统的结构和位置以及分离气泡的大小受到侧向约束的明显影响。在模拟中,存在带有侧壁的第一次反射相互作用时的马赫形杆,而在翼展方向周期性情况下会产生规则的冲击交点。在所有相互作用中都观察到低频不稳定,对于在管道内部形成的冲击波的二次冲击反射更强。还研究了次级湍流流过激波系统时在管道拐角附近形成的下游湍流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号