首页> 外文期刊>Journal of Fluid Mechanics >An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows
【24h】

An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows

机译:稳定分层流的显式代数雷诺应力和标量通量模型

获取原文
获取原文并翻译 | 示例
           

摘要

This work describes the derivation of an algebraic model for the Reynolds stresses and turbulent heat flux in stably stratified turbulent flows, which are mutually coupled for this type of flow. For general two-dimensional mean flows, we present a correct way of expressing the Reynolds-stress anisotropy and the (normalized) turbulent heat flux as tensorial combinations of the mean strain rate, the mean rotation rate, the mean temperature gradient and gravity. A system of linear equations is derived for the coefficients in these expansions, which can easily be solved with computer algebra software for a specific choice of the model constants. The general model is simplified in the case of parallel mean shear flows where the temperature gradient is aligned with gravity. For this case, fully explicit and coupled expressions for the Reynolds-stress tensor and heat-flux vector are given. A self-consistent derivation of this model would, however, require finding a root of a polynomial equation of sixth-order, for which no simple analytical expression exists. Therefore, the nonlinear part of the algebraic equations is modelled through an approximation that is close to the consistent formulation. By using the framework of a Kω model (where K is turbulent kinetic energy and ω an inverse time scale) and, where needed, near-wall corrections, the model is applied to homogeneous shear flow and turbulent channel flow, both with stable stratification. For the case of homogeneous shear flow, the model predicts a critical Richardson number of 0.25 above which the turbulent kinetic energy decays to zero. The channel-flow results agree well with DNS data. Furthermore, the model is shown to be robust and approximately self-consistent. It also fulfils the requirements of realizability.
机译:这项工作描述了在稳定分层的湍流中雷诺应力和湍流热通量的代数模型的推导,它们对于这种类型的流是相互耦合的。对于一般的二维平均流,我们提出了一种正确的方式来表达雷诺应力各向异性和(规范化的)湍流热通量,作为平均应变率,平均转速,平均温度梯度和重力的张量组合。对于这些扩展中的系数,导出了一个线性方程组,可以使用计算机代数软件轻松解决该问题,以选择模型常数。在温度梯度与重力平行的平行平均剪切流的情况下,简化了通用模型。对于这种情况,给出了雷诺应力张量和热通量矢量的完全显式和耦合表达式。但是,此模型的自洽推导需要找到六阶多项式方程的根,对此,不存在任何简单的解析表达式。因此,代数方程的非线性部分是通过近似于一致公式的近似建模的。通过使用Kω模型的框架(其中K为湍动能,ω为反时标),并在需要时进行近壁校正,将该模型应用于均质剪切流和湍流通道流,均具有稳定的分层。对于均质剪切流,模型预测临界理查森数为0.25,高于该值时湍动能衰减为零。通道流结果与DNS数据非常吻合。此外,该模型显示出鲁棒性和近似自洽性。它还满足了可实现性的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号