...
首页> 外文期刊>Journal of Fluid Mechanics >Two-layer shallow-water dam-break solutions for gravity currents in non-rectangular cross-area channels
【24h】

Two-layer shallow-water dam-break solutions for gravity currents in non-rectangular cross-area channels

机译:非矩形横断面通道中重力流的两层浅水溃坝解决方案

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We consider the propagation of a high-Reynolds-number gravity current in a horizontal channel along the horizontal coordinate x. The bottom and top of the channel are at z=0,H, and the cross-section is given by the quite general -f_1(z)≤y≤f_2(z) for 0≤z≤H. We develop a two-layer shallow-water (SW) formulation, and we implement it for the solution of the dam-break problem. The dependent variables are the position of the interface, h(x,t), and the velocity (averaged over the area of the current), u(x,t). The non-rectangular cross-section geometry enters the formulation via f(h) and integrals of f(z) and zf(z), where f(z) = f_1(z)+f_2(z) is the width of the channel. For a given geometry f(z), the free input parameters of the lock-release problem are: (i) the height ratio H/h_0 of ambient to lock; and (ii) the density ratio of 'light' to 'heavy' fluids, R. We show that the dam-break problem is amenable to solution by the method of characteristics, but various complications (internal jumps, critical restrictions) appear when the return flow in the ambient is significant; these features are not captured by a one-layer shallow-water model. The role of the nonstandard geometry in the detection and calculation of the internal and reflected jumps, and on the dam-break flow field, is elucidated. The methodology is illustrated for Boussinesq flow in typical geometries: power-law (f(z)=bz~a, where b,a are positive constants), trapezoidal and circle (full or sector); we solved for full-depth (H=1) and part-depth (H > 1) lock-release configurations. The approach seems to work well: in all the tested cases, the solution was obtained with simple mathematical and numerical tools (a Runge-Kutta integrator and a secant-method solver); the insights are compatible with our previous understanding of the problem; and the standard (rectangular) case is recovered in the appropriate limit (i.e. when the side-boundaries of the trapezium cross-section are vertical or far apart). A comparison of the speed of propagation with available experiments is also presented, and the agreement is satisfactory. The present solution is a significant generalization of the classical twolayer gravity-current dam-break problem. The classical formulation for a rectangular (or laterally unbounded) channel is now just a particular case, f(z)=const., in the wide domain of cross-sections covered by the new model.
机译:我们考虑高雷诺数重力电流在水平通道中沿水平坐标x的传播。通道的底部和顶部位于z = 0,H,且横截面由非常普通的-f_1(z)≤y≤f_2(z)给出,其中0≤z≤H。我们开发了两层浅水(SW)公式,并将其用于解决溃坝问题。因变量是界面的位置h(x,t)和速度(在电流区域上求平均值)u(x,t)。非矩形横截面几何形状通过f(h)以及f(z)和zf(z)的积分进入公式,其中f(z)= f_1(z)+ f_2(z)是通道的宽度。对于给定的几何f(z),锁定释放问题的自由输入参数为:(i)环境与锁定的高度比H / h_0; (ii)“轻”流体与“重”流体的密度比R。我们证明,溃坝问题可以通过特征方法解决,但是当水坝破裂时,会出现各种复杂情况(内部跳跃,临界限制)。环境中的回流很大;一层浅水模型无法捕获这些特征。阐明了非标准几何形状在内部跳变和反射跳变的检测和计算中以及在溃坝流场中的作用。该方法在典型的几何形状中用于Boussinesq流动:幂律(f(z)= bz〜a,其中b,a为正常数),梯形和圆形(实心或扇形);我们解决了全深度(H = 1)和部分深度(H> 1)锁定释放配置。该方法似乎运行良好:在所有测试的情况下,均通过简单的数学和数值工具(Runge-Kutta积分器和正割法求解器)获得了解决方案;这些见解与我们先前对问题的理解是兼容的;并在适当的限制下(即,当梯形横截面的侧边界垂直或相距很远时)恢复标准(矩形)情况。还给出了传播速度与可用实验的比较,并且一致性令人满意。本解决方案是经典两层重力流溃坝问题的重要概括。在新模型所涵盖的宽泛的横截面域中,矩形(或横向无边界)通道的经典公式现在只是一种特殊情况,f(z)= const.。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号