...
首页> 外文期刊>Journal of Fluid Mechanics >Buoyancy-driven motion of a gas bubble through viscous liquid in a round tube
【24h】

Buoyancy-driven motion of a gas bubble through viscous liquid in a round tube

机译:气泡通过圆管中的粘性液体进行浮力驱动的运动

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The steady axisymmetric flow of viscous liquid relative to a gas bubble due to its buoyancy-driven motion in a round tube is cornputed by solving the nonlinear Navier-Stokes equations using a Galerkin finite-element method with a boundary-fitted mesh. When the bubble is relatively small compared with the tube size (e.g. the volume-equivalent radius of the bubble is less than a quarter of the tube radius R), the bubble exhibits similar behaviour to one moving in an extended liquid, developing a spherical-cap shape with increasing Reynolds number (Re) if the capillary number is not too small. The long-bubble (also known as a Taylor bubble) characteristics can be observed with bubbles of volume-equivalent radius greater than the tube radius, especially when the surface tension effect is relatively weak (e.g. for Weber number We greater than unity). The computed values of Froude number Fr for most cases agree well with the correlation formulae derived from experimental data for long bubbles, and even with (short) bubbles of volume-equivalent radius three-quarters of the tube radius. All of the computed surface profiles of long bubbles exhibit a prolate-like nose shape, yet various tail shapes can be obtained by adjusting the parameter values of Re and. We. At large Weber number (e.g. We= 10), the bubble tail forms a concave profile with a gas 'cup' developed at small Re and a 'skirt' at large Re with sharply curved rims. For We <= 1, the bubble tail profile appears rounded without large local curvatures, although a slightly concave tail may develop at large Re. non-uniform annular film adjacent to the tube wall is commonly observed when Weber number is small, especially for bubbles of volume <3 pi R-3, suggesting that the surface tension effect can play a complicated role. Nonetheless the computed value of Fr is found to be generally independent of the bubble length for bubbles of volume-equivalent radius greater than the tube radius. If the bubble length reaches about 2.5 tube radii, the value of its frontal radius becomes basically the same as that for long bubbles of much larger volume. An examination of the distribution of the z-component of traction along the bubble surface reveals the basic mechanism for long bubbles rising at a terminal velocity that is independent of bubble volume.
机译:通过使用带有边界拟合网格的Galerkin有限元方法求解非线性Navier-Stokes方程,可以得出粘性液体在圆管中由于浮力驱动运动而相对于气泡的稳定轴对称流动。当气泡与管子尺寸相比较小时(例如,气泡的体积当量半径小于管子半径R的四分之一),则气泡表现出与在扩展液体中移动类似的行为,从而形成球形-如果毛细管数不太小,则盖的形状随雷诺数(Re)的增加而增加。当气泡的体积当量半径大于管半径时,可以观察到长气泡(也称为泰勒气泡)特性,尤其是当表面张力作用相对较弱(例如,韦伯数We大于1)时。在大多数情况下,弗洛德数Fr的计算值与从长气泡的实验数据得出的相关公式非常吻合,甚至与体积等效半径(管半径的四分之三)的(短)气泡也是如此。计算出的长气泡的所有表面轮廓都呈现出长鼻状的鼻子形状,但是可以通过调整Re和的参数值来获得各种尾巴形状。我们。在较大的韦伯数下(例如We = 10),气泡尾部形成凹形轮廓,在小Re处形成气体``杯'',在大Re处形成``裙'',边缘急剧弯曲。对于We <= 1,气泡尾部轮廓看起来是圆的,没有大的局部曲率,尽管在Re大时可能会出现稍微凹入的尾部。当韦伯数小时,通常在管壁附近观察到不均匀的环形薄膜,尤其是对于体积<3 pi R-3的气泡,这表明表面张力效应可能起着复杂的作用。尽管如此,对于体积等效半径大于管半径的气泡,发现Fr的计算值通常与气泡长度无关。如果气泡长度达到约2.5管半径,则其正面半径的值将与体积较大的长气泡的半径基本相同。对沿气泡表面的牵引力z分量分布的研究揭示了长气泡以终极速度上升的基本机制,而最终速度与气泡体积无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号