首页> 外文期刊>Journal of Fluid Mechanics >Zigzag instability of vortex pairs in stratified and rotating fluids. Part 1. General stability equations
【24h】

Zigzag instability of vortex pairs in stratified and rotating fluids. Part 1. General stability equations

机译:分层和旋转流体中涡流对的锯齿形不稳定性。第1部分。一般稳定性方程

获取原文
获取原文并翻译 | 示例
       

摘要

In stratified and rotating fluids, pairs of columnar vertical vortices are subjected to three-dimensional bending instabilities known as the zigzag instability or as the tall-column instability in the quasi-geostrophic limit. This paper presents a general asymptotic theory for these instabilities. The equations governing the interactions between the strain and the slow bending waves of each vortex column in stratified and rotating fluids are derived for long vertical wavelength and when the two vortices are well separated, i.e. when the radii R of the vortex cores are small compared to the vortex separation distance b. These equations have the same form as those obtained for vortex filaments in homogeneous fluids except that the expressions of the mutual-induction and self-induction functions are different. A key difference is that the sign of the self-induction function is reversed compared to homogeneous fluids when the fluid is strongly stratified: |max| < N (where N is the Brunt-Visl frequency and max the maximum angular velocity of the vortex) for any vortex profile and magnitude of the planetary rotation. Physically, this means that slow bending waves of a vortex rotate in the same direction as the flow inside the vortex when the fluid is stratified-rotating in contrast to homogeneous fluids. When the stratification is weaker, i.e. |max| > N, the self-induction function is complex because the bending waves are damped by a viscous critical layer at the radial location where the angular velocity of the vortex is equal to the Brunt-Visl frequency. In contrast to previous theories, which apply only to strongly stratified non-rotating fluids, the present theory is valid for any planetary rotation rate and when the strain is smaller than the Brunt-Visl frequency:/(2b~2) N, where is the vortex circulation. Since the strain is small, this condition is met across a wide range of stratification: from weakly to strongly stratified fluids. The theory is further generalized formally to any basic flow made of an arbitrary number of vortices in stratified and rotating fluids. Viscous and diffusive effects are also taken into account at leading order in Reynolds number when there is no critical layer. In Part 2 (Billant et al., J. Fluid Mech., 2010, doi:10.1017/ S002211201000282X), the stability of vortex pairs will be investigated using the present theory and the predictions will be shown to be in very good agreement with the results of direct numerical stability analyses. The existence of the zigzag instability and the distinctive stability properties of vortex pairs in stratified and rotating fluids compared to homogeneous fluids will be demonstrated to originate from the sign reversal of the self-induction function.
机译:在分层和旋转的流体中,成对的柱状垂直涡流经受三维弯曲不稳定性,即在准地转极限内被称为之字形不稳定性或高柱不稳定性。本文介绍了这些不稳定性的一般渐近理论。对于长的垂直波长,以及当两个涡旋被很好地分开时,即当涡旋芯的半径R小于时,得出了控制分层和旋转流体中每个涡旋柱的应变与慢弯曲波之间相互作用的方程。涡旋分离距离b。这些方程式与在均质流体中涡旋丝获得的方程式相同,只是互感函数和自感应函数的表达式不同。主要区别在于,当流体强烈分层时,自感应函数的符号与均质流体相比是相反的:| max |。 N时,自感应函数很复杂,因为弯曲波在径向位置的粘性临界层衰减,该位置的涡旋角速度等于Brunt-Visl频率。与仅适用于强分层非旋转流体的先前理论相反,本理论适用于任何行星旋转速率,并且当应变小于Brunt-Visl频率:/(2b〜2)N时,涡流循环。由于应变很小,因此可以在很宽的分层范围内满足这种条件:从弱分层流体到强分层流体。该理论在形式上进一步广义化为分层流体和旋转流体中由任意数量的涡旋组成的任何基本流。当没有关键层时,粘性和扩散效应也以雷诺数的前导顺序考虑。在第2部分(Billant等人,J。Fluid Mech。,2010,doi:10.1017 / S002211201000282X)中,将使用本理论研究涡旋对的稳定性,并且预测将显示与涡旋对非常一致。直接数值稳定性分析的结果。与均质流体相比,分层流体和旋转流体中之字形不稳定性的存在以及涡流对独特的稳定性能将被证明是由于自感应函数的符号反转所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号