首页> 外文期刊>Journal of Fluid Mechanics >Momentum and scalar transport at the turbulenton-turbulent interface of a jet
【24h】

Momentum and scalar transport at the turbulenton-turbulent interface of a jet

机译:射流的湍流/非湍流界面的动量和标量传输

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Conditionally sampled measurements with particle image velocimetry (PIV) of a turbulent round submerged liquid jet in a laboratory have been taken at Re = 2 x 10(3) between 60 and 100 nozzle diameters from the nozzle in order to investigate the dynamics and transport processes at the continuous and well-defined bounding interface between the turbulent and non-turbulent regions of flow. The jet carries a fluorescent dye measured with planar laser-induced fluorescence (LIF), and the surface discontinuity in the scalar concentration is identified as the fluctuating turbulent jet interface. Thence the mean outward 'boundary entrainment' velocity is derived and shown to be a constant fraction (about 0.07) of the the mean jet velocity on the centreline. Profiles of the conditional mean velocity, mean scalar and momentum flux show that at the interface there are clear discontinuities in the mean axial velocity and mean scalar and a tendency towards a singularity in mean vorticity. These actual or asymptotic discontinuities are consistent with the conditional mean momentum and scalar transport equations integrated across the interface. Measurements of the fluxes of turbulent kinetic energy and enstrophy are consistent with computations by Mathew & Basu (Phys. Fluids, vol. 14, 2002, pp. 2065-2072) in showing that for a jet flow (without forcing) the entrainment process is dominated by small-scale eddying at the highly sheared interface ('nibbling'), with large-scale engulfing making a small (less than 10%) contribution consistent with concentration measurements showing that the interior of the jet is well mixed. (Turbulent jets differ greatly from the free shear layer in this respect.) To explain the difference between velocity and scalar profiles, their conditional mean gradients are defined in terms of a local eddy viscosity and eddy diffusivity and the momentum and scalar fluxes inside the interface. Since the eddy diffusivity is larger than the eddy viscosity, the scalar profile is flatter inside the interface so that the scalar discontinuity is relatively greater than the mean velocity discontinuity. Theoretical arguments, following Hunt, Eames & Westerweel (in Proc. of the IUTAM Symp. on Computational Physics and New Perspectives in Turbulence, ed. Y. Kaneda, vol. 4, 2008, pp. 331-338, Springer), are proposed for how the vortex sheet develops, how the internal structure of the interface layer relates to the inhomogeneous rotational and irrotational motions on each side and why the dominant entrainment process of jets and wakes differs from that of free shear layers.
机译:为了研究动力学和传输过程,在实验室中以Re = 2 x 10(3)在喷嘴直径为60至100的喷嘴直径之间对湍流圆形浸没式液体射流进行了有条件的采样测量,以进行研究。在湍流区域和非湍流区域之间的连续且界限分明的边界界面处。射流中携带有用平面激光诱导荧光(LIF)测量的荧光染料,并且标量浓度中的表面不连续性被确定为波动的湍流射流界面。因此,得出了平均向外“边界夹带”速度,该速度显示为中心线上平均射流速度的恒定分数(约0.07)。条件平均速度,平均标量和动量通量的曲线表明,在界面处,平均轴向速度和平均标量存在明显的不连续性,并且平均涡度趋于奇异。这些实际的或渐近的不连续性与在界面上积分的条件平均动量和标量输运方程式一致。湍动能通量和涡旋通量的测量与Mathew&Basu的计算(Phys.Fluids,第14卷,2002年,第2065-2072页)相一致,表明对于射流(无强迫),夹带过程为高剪切界面处的小规模涡流(“吞噬”)占主导地位,大尺度吞吐的贡献很小(小于10%),这与浓度测量结果一致,表明射流的内部混合良好。 (在这方面,湍流射流与自由剪切层有很大不同。)为了解释速度和标量分布之间的差异,它们的条件平均梯度是根据局部涡流粘度和涡流扩散率以及界面内的动量和标量通量来定义的。由于涡流扩散率大于涡流粘度,因此标量分布在界面内部较平坦,因此标量不连续性相对大于平均速度不连续性。根据Hunt,Eames和Westerweel(在IUTAM关于计算物理和湍流的新观点的专着,Y。Kaneda编辑,第4卷,2008年,第331-338页)中提出了理论论证。关于涡流片如何发展,界面层的内部结构如何与两侧的不均匀旋转和非旋转运动相关,以及为什么射流和尾流的主要夹带过程与自由剪切层的夹带过程不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号