...
首页> 外文期刊>Journal of Fluid Mechanics >THE MOTION OF LONG BUBBLES IN POLYGONAL CAPILLARIES .2. DRAG, FLUID PRESSURE AND FLUID FLOW
【24h】

THE MOTION OF LONG BUBBLES IN POLYGONAL CAPILLARIES .2. DRAG, FLUID PRESSURE AND FLUID FLOW

机译:多边形毛细管中长气泡的运动.2。拖曳,流体压力和流体流动

获取原文
获取原文并翻译 | 示例

摘要

This work determines the pressure-velocity relation of bubble flow in polygonal capillaries. The liquid pressure drop needed to drive a long bubble at a given velocity U is solved by an integral method. In this method, the pressure drop is shown to balance the drag of the bubble, which is determined by the films at the two ends of the bubble. Using the liquid-film results of Part 1 (Wong, Radke and Morris 1995), we find that the drag scales as Ca-2/3 in the limit Ca-->0 (Ca = mu U/sigma, where mu is the liquid viscosity and sigma the surface tension). Thus, the pressure drop also scales as Ca-2/3. The proportionality constant for six different polygonal capillaries is roughly the same and is about a third that for the circular capillary. The liquid in a polygonal capillary flows by pushing the bubble (plug flow) and by bypassing the bubble through corner channels (corner flow). The resistance to the plug flow comes mainly from the drag of the bubble. Thus, the plug flow obeys the nonlinear pressure-velocity relation of the bubble. Corner flow, however, is chiefly unidirectional because the bubble is long. The ratio of plug to corner flow varies with liquid flow rate Q (made dimensionless by sigma a(2)/mu, where alpha is the radius of the largest inscribed sphere). The two flows are equal at a critical flow rate Q(c), whose value depends strongly on capillary geometry and bubble length. For the six polygonal capillaries studied, Q(c) much less than 10(-6). For Q(c) much less than 1, the plug flow dominates, and the gradient in liquid pressure varies with Q(2/3). For Q much less than Q(c), the corner flow dominates, and the pressure gradient varies linearly with Q. A transition at such low flow rates is unexpected and partly explains the complex theology of foam flow in porous media. [References: 11]
机译:这项工作确定了多边形毛细管中气泡流动的压力-速度关系。通过积分方法可以解决以给定速度U驱动长气泡所需的液压降。在这种方法中,压降显示为平衡气泡的阻力,该阻力由气泡两端的薄膜决定。使用第1部分的液膜结果(Wong,Radke和Morris 1995),我们发现阻力在Ca-> 0的极限范围内为Ca-2 / 3(Ca = mu U / sigma,其中mu是液体粘度和σ表面张力)。因此,压降也按Ca-2 / 3定标。六个不同的多边形毛细管的比例常数大致相同,约为圆形毛细管的比例常数的三分之一。多边形毛细管中的液体通过推动气泡(塞流)和绕过拐角通道的气泡(角流)而流动。活塞流的阻力主要来自气泡的阻力。因此,塞流服从气泡的非线性压力-速度关系。但是,由于气泡很长,角流主要是单向的。阀塞与角流量之比随液体流量Q(以σa(2)/μ为无量纲,其中α是最大内切球的半径)而变化。两种流量在临界流量Q(c)相等,其临界值很大程度上取决于毛细管的几何形状和气泡长度。对于研究的六个多边形毛细管,Q(c)远小于10(-6)。对于远远小于1的Q(c),活塞流占主导地位,并且液体压力梯度随Q(2/3)变化。对于远远小于Q(c)的Q,角流占主导地位,压力梯度随Q线性变化。在如此低的流速下过渡是出乎意料的,部分解释了多孔介质中泡沫流动的复杂神学。 [参考:11]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号