【24h】

Some general remarks on hyperplasticity modelling and its extension to partially saturated soils

机译:关于超塑性建模及其扩展至部分饱和土的一些一般性评论

获取原文
获取原文并翻译 | 示例
           

摘要

The essential ideas and equations of classic plasticity and hyperplasticity are successively recalled and compared, in order to highlight their differences and complementarities. The former is based on the mathematical framework proposed by Hill (The mathematical theory of plasticity. Oxford University Press, Oxford, 1950), whereas the latter is founded on the orthogonality hypothesis of Ziegler (An introduction to thermomechanics. Elsevier, North-Holland, 1983). The main drawback of classic plasticity is the possibility of violating the second principle of thermodynamics, while the relative ease to conjecture the yield function in order to approach experimental results is its main advantage. By opposition, the a priori satisfaction of thermodynamic principles constitutes the chief advantage of hyperplasticity theory. Noteworthy is also the fact that this latter approach allows a finer energy partition; in particular, the existence of frozen energy emerges as a natural consequence from its theoretical formulation. On the other hand, the relative difficulty to conjecture an efficient dissipation function to produce accurate predictions is its main drawback. The two theories are thus better viewed as two complementary approaches. Following this comparative study, a methodology to extend the hyperplasticity approach initially developed for dry or saturated materials to the case of partially saturated materials, accounting for interface energies and suction effects, is developed. A particular example based on the yield function of modified Cam-Clay model is then presented. It is shown that the approach developed leads to a model consistent with other existing works.
机译:为了突出它们的差异和互补性,先后回顾和比较了经典可塑性和超塑性的基本思想和方程式。前者基于希尔提出的数学框架(可塑性的数学理论。牛津大学出版社,牛津,1950年),而后者则基于齐格勒的正交性假设(热力学导论。爱思唯尔,北荷兰, 1983)。经典可塑性的主要缺点是有可能违反热力学的第二原理,而相对容易推测屈服函数以接近实验结果是其主要优点。相反,热力学原理的先验满足构成了超塑性理论的主要优势。值得注意的是,后一种方法可以实现更好的能量分配。特别是,冻结能量的存在是其理论表述的自然结果。另一方面,它的主要缺点是难以推测有效的耗散函数以产生准确的预测。因此,最好将这两种理论视为两种互补的方法。根据这项比较研究,开发了一种方法,该方法将最初为干燥或饱和材料开发的超塑性方法扩展到部分饱和材料的情况(考虑了界面能和吸力效应)。然后给出了一个基于修改后的Cam-Clay模型的屈服函数的特定示例。结果表明,所开发的方法导致了与其他现有作品一致的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号