首页> 外文期刊>Journal of Environmental Engineering >Thermodynamic framework for analysis of waste containment barrier materials
【24h】

Thermodynamic framework for analysis of waste containment barrier materials

机译:用于分析废物密闭阻隔材料的热力学框架

获取原文
获取原文并翻译 | 示例
       

摘要

In order to analyze the fate and estimate the transport rates of contaminants through a barrier system, textural parameters such as the specific surface, density, permeability, diffusion coefficient, and flow path tortuosity are usually measured or estimated. The magnitudes of transport parameters of barrier systems are expected to change in response to physicochemical reactions and other environmental stresses, the intensities of which may grow or wane over time. In essence, when discrete catastrophic events (for example, earthquakes) are discounted, the flaws that develop are macroscopic manifestations of microlevel processes. Processes such as crystallization and precipitation add solid material to pore spaces in barriers and can improve barrier performance. Conversely, processes that cause changes in state from solid to liquid (for example, material dissolution) degrade barriers through the creation of larger flow channels. An appreciation of the thermodynamics of contaminant/barrier interactions under various environmental (temperature, pressure, and moisture) conditions is a prerequisite for establishing the bounds for textural changes and estimating contaminant release rates from containment systems. Then, process kinetics can be used to estimate the rate at which such texture-controlling processes may occur. The alternative approach is to conduct numerous "test-and-see" factorial experiments of limited utility, in which one parameter is changed at a time. The latter approach consumes resources excessively, relative to an approach that involves the use of thermodynamics to minimize the number of tests. In this paper, long-term deterioration mechanisms are analyzed, and a framework for their assessment within the context of barrier system performance modeling is presented.
机译:为了分析命运并估算污染物通过屏障系统的传输速率,通常会测量或估算质地参数,例如比表面,密度,渗透性,扩散系数和流路曲折度。预期屏障系统的传输参数的大小会响应物理化学反应和其他环境压力而发生变化,其强度可能随时间增长或减弱。从本质上讲,当离散的灾难性事件(例如地震)被抵消时,所产生的缺陷是微观过程的宏观表现。诸如结晶和沉淀之类的过程会将固体材料添加到势垒中的孔空间中,并可以改善势垒性能。相反,导致状态从固态变为液态(例如,材料溶解)的过程会通过创建更大的流动通道来降低屏障。认识各种环境(温度,压力和湿度)条件下污染物/屏障相互作用的热力学是确定结构变化的界限和估计污染物从封闭系统中释放速率的先决条件。然后,可以使用过程动力学来估计这种纹理控制过程可以发生的速率。另一种方法是进行众多用途有限的“测试与查看”析因实验,其中一次更改一个参数。相对于涉及使用热力学来最小化测试数量的方法,后一种方法会过多地消耗资源。本文分析了长期恶化机制,并提出了在屏障系统性能建模的背景下对其进行评估的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号