...
首页> 外文期刊>Journal of Electronic Materials >Flow-field prediction in submerged and confined jet impingement using the Reynolds stress model
【24h】

Flow-field prediction in submerged and confined jet impingement using the Reynolds stress model

机译:雷诺应力模型在水下和受限射流冲击中的流场预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The flow field of a normally impinging, axisymmetric, confined and submerged liquid jet is predicted using the Reynolds Stress Model in the commercial finite-volume code FLUENT. The results are compared with experimental measurements and flowvisualizations and are used to describe the position of the recirculating toroid in the outflow region which is characteristic of the confined flow field. Changes in the features of the recirculation pattern due to changes in Reynolds number, nozzlediameter, and nozzle-to-target plate spacing are documented. Results are presented for nozzle diameters of 3.18 and 6.35 mm, at jet Reynolds numbers in the range of 2000 to 23,000, and nozzle-to-target plate spacings of 2, 3, and 4 jet diameters. Up tothree interacting vortical structures are predicted in the confinement region at the smaller Reynolds numbers. The center of the primary recirculation pattern moves away from the centerline of the jet with an increase in Reynolds number, nozzle diameter,and nozzle-to-target plate spacing. The computed flow patterns were found to be in very good qualitative agreement with experiments. The radial location of the center of the primary toroid was predicted to within±40 percent and±3 percent of theexperimental position for Re = 2000-4000 and Re = 8500-23000, respectively. The magnitude of the centerline velocity of the jet after the nozzle exit was computed with an average error of 6 percent. Reasons for the differences between the numericalpredictions at Re = 2000-4000 and experiments are discussed. Predictions of the flow field using the standard high-Reynolds number k-ε and renormalization group theory (RNG) k-ε models are shown to be inferior to Reynolds stress model predictions.
机译:使用商业有限体积代码FLUENT中的雷诺应力模型,可预测正常撞击,轴对称,受限和浸没液体射流的流场。将结果与实验测量结果和流动可视化进行比较,并用于描述回流环在流出区域中的位置,这是受限流场的特征。记录了由于雷诺数,喷嘴直径和喷嘴至目标板间距的变化而导致的再循环模式特征的变化。在喷嘴雷诺数为2000至23,000的情况下,喷嘴直径为3.18和6.35毫米,喷嘴与目标板的间距为喷嘴直径的2、3和4时,给出了结果。在较小的雷诺数下的约束区域中,最多预测了三个相互作用的涡旋结构。随着雷诺数,喷嘴直径和喷嘴至目标板间距的增加,主要再循环模式的中心远离喷嘴的中心线。发现计算出的流动模式与实验非常吻合。在Re = 2000-4000和Re = 8500-23000的情况下,预计初级环面中心的径向位置分别在实验位置的±40%和±3%之内。计算出喷嘴出口后射流的中心线速度的大小,平均误差为6%。讨论了Re = 2000-4000时数值预测与实验之间差异的原因。使用标准高雷诺数k-ε和重归一化群论(RNG)k-ε模型进行的流场预测显示不及雷诺应力模型的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号