首页> 外文期刊>Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry >Comparison of flux approximations in electrochemical digital simulation. Part 2: Complications due to homogeneous chemical reactions, charge estimation and application to the ultramicrodisk electrode
【24h】

Comparison of flux approximations in electrochemical digital simulation. Part 2: Complications due to homogeneous chemical reactions, charge estimation and application to the ultramicrodisk electrode

机译:电化学数字仿真中通量近似值的比较。第2部分:由于均相化学反应,电荷估计和在超微盘电极上的应用而引起的并发症

获取原文
获取原文并翻译 | 示例
           

摘要

In numerical simulation of electrochemical systems the estimation of current flow or passed charge from simulated concentrations plays a crucial role and various approaches within the framework of finite differences are examined in this paper. Both on an exponentially expanding grid in X-space, and the corresponding equidistant grid in transformed Y-space, fluxes were expressed as either gradient approximations using a variable number of points, or as the spatial integral of rates of changes of the concentrations with time over the whole diffusion space, in the presence of homogeneous chemical reactions. Also, the passed charge was computed for these cases. The cases of chronoamperometric boundary conditions at a shrouded plane and an ultramicrodisk electrode (UMDE) were simulated. Results show that in all cases, fluxes computed on the basis of the spatial concentration gradient at the electrode are the most accurate provided that the Rudolph modification of the two-point flux in Y-space is used; it also works very well in the presence of homogeneous chemical reactions. The flux approximation on the basis of spatial integration of the time derivative of concentration comes a close second in Y-space in the case of one-dimensional simulations when K is not too large, and also works rather well in the case of the UMDE in transformed space. Charge computed as the time integral of flux can be quite accurate if two separate simulation runs are carried out, combining the results by extrapolation. Charge computed as the spatial integration of concentration loss in the diffusion space (not practical in the presence of a homogeneous chemical reaction) can also be quite accurate, both in the one- and two-dimensional case.(C) 2008 Elsevier B.V. All rights reserved.
机译:在电化学系统的数值模拟中,根据模拟浓度估算电流或通过的电荷起着至关重要的作用,本文研究了有限差分框架内的各种方法。既在X空间中的指数扩展网格上,又在变换后的Y空间中对应的等距网格上,通量都表示为使用可变点数的梯度近似,或者表示为浓度随时间的变化率的空间积分在整个扩散空间中,存在均相化学反应。同样,针对这些情况计算了通过的费用。模拟了在覆盖平面和超微盘电极(UMDE)上计时电流边界条件的情况。结果表明,在所有情况下,如果使用Y空间中两点通量的鲁道夫修正,则根据电极处的空间浓度梯度计算出的通量是最准确的。在存在均相化学反应的情况下,它的效果也很好。在K不太大的情况下,在一维模拟的情况下,基于浓度时间导数的空间积分的通量近似值在Y空间中紧随其后,在UMDE情况下效果也很好。变换的空间。如果进行两个单独的模拟运行,并通过外推法组合结果,则计算为通量时间积分的电荷可能会非常准确。在一维和二维情况下,计算为扩散空间中浓度损失的空间积分(在存在均相化学反应时不实际)的电荷也可能非常准确。(C)2008 Elsevier BV版权所有保留。

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号