首页> 外文期刊>Journal of Applied Meteorology >An automated method of MFRSR calibration for aerosol optical depth analysis with application to an asian dust outbreak over the United States
【24h】

An automated method of MFRSR calibration for aerosol optical depth analysis with application to an asian dust outbreak over the United States

机译:用于气溶胶光学深度分析的MFRSR校准自动化方法,并应用于美国亚洲尘埃暴发

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Over the past decade, networks of Multifilter Rotating Shadowband Radiometers (MFRSR) and automated sun photometers have been established in the United States to monitor aerosol properties. The MFRSR alternately measures diffuse and global irradiance in six narrow spectral bands and a broadband channel of the solar spectrum, from which the direct normal component for each may be inferred. Its 500-nm channel mimics sun photometer measurements and thus is a source of aerosol optical depth information. Automatic data reduction methods are needed because of the high volume of data produced by the MFRSR. In addition, these instruments are often not calibrated for absolute irradiance and must be periodically calibrated for optical depth analysis using the Langley method. This process involves extrapolation to the signal the MFRSR would measure at the top of the atmosphere (I_#Lambda##omicron#). Here, an automated clear-sky identification algorithm is used to screen MFRSR 500-nm measurements for suitable calibration data. The clear-sky MFRSR measurements are subsequently used to construct a set of calibration Langley plots from which a mean I_#Lambda##omicron# is computed. This calibration I_#Lambda##omicron# may be subsequently applied to any MFRSR 500-nm measurement within the calibration period to retrieve aerosol optical depth. This method is tested on a 2-month MFRSR dataset from the Table Mountain NOAA Surface Radiation Budget Network (SURFRAD) station near Boulder, Colorado. The resultant I_#Lambda##omicron# is applied to two Asian dust-related high air pollution episodes that occurred within the calibration period on 13 and 17 April 2001. Computed aerosol optical depths for 17 April range from approximately 0.30 to 0.40, and those for 13 April vary from background levels to >0.30. Errors in these retrievals were estimated to range from +-0.01 to +-0.05, depending on the solar zenith angle. The calculations are compared with independent MFRSR-based aerosol optical depth retrievals at the Pawnee National Grasslands, 85 km to the northeast of Table Mountain, and to sun-photometer-derived aerosol optical depths at the National Renewable Energy Laboratory in Golden, Colorado, 50 km to the south. Both the Table Mountain and Golden stations are situated within a few kilometers of the Front Range of the Rocky Mountains, whereas the Pawnee station is on the eastern plains of Colorado. Time series of aerosol optical depth from Pawnee and Table Mountain stations compare well for 13 April when, according to the Naval Aerosol Analysis and Prediction System, an upper-level Asian dust plume enveloped most of Colorado. Aerosol optical depths at the Golden station for that event are generally greater than those at Table Mountain and Pawnee, possibly because of the proximity of Golden to Denver's urban aerosol plume. The dust over Colorado was primarily surface based on 17 April. On that day, aerosol optical depths at Table Mountain and Golden are similar but are 2 times the magnitude of those at Pawnee.This difference is attributed to meteorological conditions that favored air stagnation in the planetary boundary layer along the Front Range, and a west-to-east gradient in aerosol concentration. The magnitude and timing of the aerosol optical depth measurements at Table Mountain for these events are found to be consistent with independent measurements made at NASA Aerosol Robotic Network (AERONET) stations at Missoula, Montana, and at Bondville, Illinois.
机译:在过去的十年中,在美国建立了多滤光片旋转阴影带辐射计(MFRSR)和自动太阳光度计的网络,以监测气溶胶特性。 MFRSR交替测量六个窄光谱带和太阳光谱的宽带信道中的散射和全局辐照度,从中可以推断出每个光谱的直接法向分量。它的500纳米通道模仿了太阳光度计的测量,因此是气溶胶光学深度信息的来源。由于MFRSR产生大量数据,因此需要自动数据缩减方法。另外,这些仪器通常没有针对绝对辐照度进行校准,必须定期进行校准以使用Langley方法进行光学深度分析。此过程涉及外推到MFRSR将在大气层顶部测量的信号(I_#Lambda ## omicron#)。在这里,使用自动晴空识别算法来筛选MFRSR 500 nm测量值以获取合适的校准数据。随后使用晴空MFRSR测量来构建一组校准Langley图,从中可以计算出平均值I_#Lambda ## omicron#。该校准I_#Lambda ## omicron#可随后在校准期内应用于任何MFRSR 500-nm测量,以获取气溶胶光学深度。在科罗拉多州博尔德附近的桌山NOAA表面辐射预算网络(SURFRAD)站的为期2个月的MFRSR数据集上对该方法进行了测试。所得的I_#Lambda ## omicron#被应用于两个亚洲尘埃相关的高空气污染事件,这些事件发生在2001年4月13日至17日的校准期内。4月17日计算的气溶胶光学深度范围从大约0.30到0.40,而那些4月13日的数据从背景水平变化至> 0.30。根据太阳天顶角,这些取回的误差估计在+ -0.01到+ -0.05之间。将计算结果与桌山东北部85公里处的波尼国家草原上基于MFRSR的独立气溶胶光学深度取值进行了比较,并与科罗拉多州戈尔德市国家可再生能源实验室的太阳光度计得出的气溶胶光学深度进行了比较(50)向南公里。桌山和黄金站都位于落基山脉前线山脉的几公里之内,而波尼站则位于科罗拉多州的东部平原。根据海军气溶胶分析和预测系统的数据,从波尼和桌山气象站的气溶胶光学深度的时间序列在4月13日比较好,当时,整个科罗拉多州的大部分地区都覆盖有亚洲高层尘埃羽。对于该事件,Golden站的气溶胶光学深度通常大于Table Mountain和Pawnee的气溶胶光学深度,这可能是由于Golden靠近丹佛的城市气雾羽。 4月17日,科罗拉多州上空的尘埃主要是表面。那天,桌山和戈尔登的气溶胶光学深度相似,但是是波尼的2倍。这种差异归因于气象条件,有利于沿前锋范围的行星边界层中的空气停滞,以及气溶胶浓度向东倾斜。发现在桌山进行的这些事件的气溶胶光学深度测量的大小和时间与在蒙大拿州米苏拉的NASA气溶胶机器人网络(AERONET)站以及伊利诺伊州的邦德维尔进行的独立测量一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号