...
首页> 外文期刊>Journal of Controlled Release: Official Journal of the Controlled Release Society >'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics
【24h】

'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics

机译:“隐身”纳米颗粒可逃避神经免疫细胞,但也逃避主要脑细胞群:对基于PEG的神经治疗药的意义

获取原文
获取原文并翻译 | 示例

摘要

Surface engineering to control cell behavior is of high interest across the chemical engineering, drug delivery and biomaterial communities. Defined chemical strategies are necessary to tailor nanoscale protein interactions/adsorption, enabling control of cell behaviors for development of novel therapeutic strategies. Nanoparticle-based therapies benefit from such strategies but particle targeting to sites of neurological injury remains challenging due to circulatory immune clearance. As a strategy to overcome this barrier, the use of stealth coatings can reduce immune clearance and prolong circulatory times, thereby enhancing therapeutic capacity. Polyethylene glycol (PEG) is the most widely-used stealth coating and facilitates particle accumulation in the brain. However, once within the brain, the mode of handling of PEGylated particles by the resident immune cells of the brain itself (the 'microglia') is unknown. This is a critical question as it is well established that microglia avidly sequester nanoparticles, limiting their bioavailability and posing a major translational barrier. If PEGylation can be proved to promote evasion of microglia, then this information will be of high value in developing tailored nanoparticle-based therapies for neurological applications. Here, we have conducted the first comparative study of uptake of PEGylated particles by all the major (immune and non-immune) brain cell types. We prove for the first time that PEGylated nanoparticles evade major brain cell populations - a phenomenon which will enhance extracellular bioavailability. We demonstrate changes in protein coronas around these particles within biological media, and discuss how surface chemistry presentation may affect this process and subsequent cellular interactions. (C) 2016 Elsevier B.V. All rights reserved.
机译:在化学工程,药物输送和生物材料领域,控制细胞行为的表面工程非常受关注。定义化学策略对于定制纳米级蛋白质相互作用/吸附是必需的,从而能够控制细胞行为以开发新的治疗策略。基于纳米颗粒的疗法受益于这种策略,但是由于循环免疫清除,将颗粒靶向神经损伤部位仍然具有挑战性。作为克服这一障碍的策略,隐形涂层的使用可以降低免疫清除率并延长循环时间,从而提高治疗能力。聚乙二醇(PEG)是使用最广泛的隐形涂层,可促进大脑中的颗粒堆积。然而,一旦进入大脑,大脑自身的固有免疫细胞(“小胶质细胞”)对PEG化颗粒的处理方式是未知的。这是一个关键问题,因为众所周知,小胶质细胞会螯合纳米颗粒,从而限制了它们的生物利用度并构成了主要的翻译障碍。如果可以证明聚乙二醇化可以促进小胶质细胞的逃逸,那么该信息对于开发针对神经学应用的量身定制的基于纳米颗粒的疗法将具有很高的价值。在这里,我们进行了所有主要(免疫和非免疫)脑细胞类型吸收PEG化颗粒的比较研究。我们首次证明了聚乙二醇化的纳米颗粒可以逃避主要的脑细胞群-这种现象将增强细胞外的生物利用度。我们展示了生物介质内这些颗粒周围蛋白质电晕的变化,并讨论了表面化学表现如何影响该过程和随后的细胞相互作用。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号