首页> 外文期刊>Journal of chromatography, A: Including electrophoresis and other separation methods >Optimization of post-column reactor radius in capillary high performance liquid chromatography - Effect of chromatographic column diameter and particle diameter
【24h】

Optimization of post-column reactor radius in capillary high performance liquid chromatography - Effect of chromatographic column diameter and particle diameter

机译:毛细管高效液相色谱法中柱后反应器半径的优化-色谱柱直径和粒径的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nob,) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte's retention factor, k', is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (a,) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of a, become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 mu radius is suitable for all columns smaller than 150 mu m (radius) packed with 2-5 mu m particles. For 1 mu m packing particles, only columns smaller than 42.5 mu m (radius) can be used and the reactor radius needs to be 5 mu m. (c) 2006 Elsevier B.V. All rights reserved.
机译:由简单的开口管组成的柱后反应器(毛细管泰勒反应器)以两种方式影响毛细管液相色谱仪的性能:从色谱柱中窃取压力和增加谱带扩展。对于非常小的半径反应堆,前者是一个问题,而对于较大的反应堆直径,后者表现出自己。考虑到上述两种影响,我们得出了一个定义理论塔板数(Nob,)的方程。进行一些假设并确定某些条件会导致最终方程式的变量数量有限,即色谱柱半径,反应器半径和色谱粒径。假设和条件是使用van Deemter方程,传质限制是球形颗粒内颗粒内扩散,速度是最佳状态,分析物的保留因子k'为零,柱后反应器只有很长足以使试剂和分析物完全混合,并使用泵系统的最大工作压力。通过比较在有反应器和无反应器的情况下观察到的理论塔板数(以及单位时间内的理论塔板数)来获得反应器半径的最佳范围。结果表明,可接受的反应器半径取决于色谱柱直径,粒径和最大可用压力。 α的最佳范围随着柱直径的增加,粒径的减小或最大压力的减小而变窄。当可用压力为4000 psi时,半径为12微米的毛细管泰勒反应器适用于所有小于150微米(半径)的,装有2-5微米颗粒的色谱柱。对于1μm的填料颗粒,只能使用小于42.5μm(半径)的色谱柱,反应器半径需要为5μm。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号