首页> 外文期刊>Journal of Computational and Applied Mathematics >Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: A Chebyshev-Hermite-Pade method
【24h】

Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: A Chebyshev-Hermite-Pade method

机译:Chebyshev在带有分支点的区间上的切比雪夫展开及其对开普勒方程根的应用:一种切比雪夫-赫尔米特-帕德方法

获取原文
获取原文并翻译 | 示例
           

摘要

When two or more branches of a function merge, the Chebyshev series of u(lambda) will converge very poorly with coefficients an of T-n(lambda) failing as O(l(alpha)) for some small positive exponent alpha. However, as shown in [J.P. Boyd, Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation, Appl. Math. Comput. 143 (2002) 189-200], it is possible to obtain approximations that converge exponentially fast in n. If the roots that merge are denoted as u(l) (lambda) and u(2) (lambda), then both branches can be written without approximation as the roots of (u - u(1) (lambda))(u - u(2)(lambda)) = u(2) + beta(lambda)u + gamma(lambda). By expanding the nonsingular coefficients of the quadratic, beta(lambda) and gamma(lambda), as Chebyshev series and then applying the Usual roots-of-a-quadratic formula, we can approximate both branches simultaneously with error that decreases proportional to exp(-sigma N) for some constant sigma > 0 where N is the truncation of the Chebyshev series. This is dubbed the "Chebyshev-Shafet" or "Chebyshev-Hermite-Pade" method because it substitutes Chebyshev series for power series in the generalized Pade approximants known variously as "Shafer" or "Hermite-Padd" approximants. Here we extend these ideas. First, we explore square roots with branches that are both real-valued and complex-valued in the domain of interest, illustrated by meteorological baroclinic instability. Second, we illustrate triply branched functions via roots of the Kepler equation, f (u; lambda, epsilon) equivalent to u - epsilon sin(u) - lambda = 0. Only one of the merging roots is real-valued and the root depends oil two parameters (lambda, epsilon) rather than one. Nonetheless. the Chebyshev-Hermite-Pade scheme is successful over the whole two-dimensional parameter plane. We also discuss how to cope with poles and logarithmic singularities that arise in our examples at the extremes of the expansion domain. (C) 2008 Elsevier B.V. All rights reserved.
机译:当一个函数的两个或多个分支合并时,u(lambda)的切比雪夫序列收敛性非常差,T-n(lambda)的系数an对于一些小的正指数alpha失败为O(l α)。但是,如图[J.P. Boyd,Chebyshev多项式展开式,用于函数的两个分支的同时逼近,适用于一维Bratu方程Appl。数学。计算143(2002)189-200],则有可能获得近似快速收敛于n的近似值。如果合并的根表示为u(l)(lambda)和u(2)(lambda),则两个分支都可以近似地写为(u-u(1)(lambda))(u- u(2)(λ))= u(2)+ beta(λ)u + gamma(λ)。通过将二次方β(λ)和γ(λ)的非奇异系数展开为Chebyshev级数,然后应用通常的二次方根公式,我们可以同时近似两个分支,并且误差与exp( -sigma N)表示某些常数sigma> 0,其中N是Chebyshev级数的截断。之所以将其称为“ Chebyshev-Shafet”或“ Chebyshev-Hermite-Pade”方法,是因为它在广义的Pade近似中将Chebyshev级数替换为幂级数,并被称为“ Shafer”或“ Hermite-Padd”近似值。在这里,我们扩展这些想法。首先,我们探索在感兴趣域中具有实值和复值分支的平方根,这由气象斜压不稳定性说明。其次,我们通过开普勒方程的根f(u; lambda,epsilon)等效于u-epsilon sin(u)-lambda = 0来说明三重分支函数。只有合并的根之一是实值,并且根依赖上油两个参数(λ,ε)而不是一个。尽管如此。 Chebyshev-Hermite-Pade方案在整个二维参数平面上都是成功的。我们还将讨论在扩展域的极端情况下如何应对示例中出现的极点和对数奇点。 (C)2008 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号