首页> 外文期刊>Journal of cataract and refractive surgery >Comparison of ray-tracing method and thin-lens formula in intraocular lens power calculations.
【24h】

Comparison of ray-tracing method and thin-lens formula in intraocular lens power calculations.

机译:人工晶状体屈光力计算中光线追踪方法和薄镜公式的比较。

获取原文
获取原文并翻译 | 示例
           

摘要

PURPOSE: To compare the accuracy of the thin-lens and ray-tracing methods in intraocular lens (IOL) power calculations in normal eyes and eyes after corneal refractive surgery. SETTING: International Vision Correction Research Centre, University of Heidelberg, Heidelberg, Germany. METHODS: Pseudophakic eye models were constructed using Zemax optical software, importing corneal radii (normal ray tracing) and corneal surface elevation data (individual ray tracing) measured by Pentacam Scheimpflug photography. Algorithms to predict IOL position (effective lens position [ELP]) or postoperative anterior chamber depth [ACD(post)]) (Haigis, Hoffer Q, Norrby, Olsen 2) were used in the thin-lens and ray-tracing methods. Intraocular lens power was calculated in 25 eyes after corneal refractive surgery using normal and double-K modified thin-lens and ray-tracing methods. RESULTS: Back-calculation of ELP and ACD(post) were well correlated. Using algorithms of Haigis, Hoffer Q, Norrby, and Olsen 2 to predict IOL position, mean absolute prediction errors (MAEs) of the thin-lens formula were 0.64 diopters (D) +/- 0.52 (SD), 0.57 +/- 0.46 D, 0.59 +/- 0.42 D, and 0.61 +/- 0.47 D, respectively; MAEs of normal ray-tracing method were 0.64 +/- 0.50 D, 0.58 +/- 0.44 D, 0.59 +/- 0.41 D, and 0.62 +/- 0.45 D, respectively; MAEs of individual ray-tracing method were 0.66 +/- 0.52 D, 0.59 +/- 0.45 D, 0.59 +/- 0.43 D, and 0.62 +/- 0.50 D, respectively. No statistical differences were found between the thin-lens and ray-tracing methods. CONCLUSION: Theoretical thin-lens formulas were as accurate as the ray-tracing method in IOL power calculations in normal eyes and eyes after refractive surgery.
机译:目的:比较普通眼和角膜屈光手术后眼睛的人工晶状体(IOL)屈光度计算中的微透镜和光线追踪方法的准确性。地点:德国海德堡大学国际视力矫正研究中心。方法:使用Zemax光学软件构建伪晶状体眼模型,导入通过Pentacam Scheimpflug摄影术测量的角膜半径(正常射线追踪)和角膜表面高程数据(单独射线追踪)。在薄透镜和射线追踪方法中使用了预测IOL位置(有效晶状体位置[ELP])或术后前房深度[ACD(post)](Haigis,Hoffer Q,Norrby,Olsen 2)的算法。角膜屈光手术后使用普通和双K修改型薄镜和光线追踪法计算了25眼角膜屈光度数。结果:ELP和ACD(post)的反向计算具有良好的相关性。使用Haigis,Hoffer Q,Norrby和Olsen 2的算法来预测IOL位置,薄透镜公式的平均绝对预测误差(MAE)为0.64屈光度(D)+/- 0.52(SD),0.57 +/- 0.46 D,0.59 +/- 0.42 D和0.61 +/- 0.47 D;正常光线追踪方法的MAE分别为0.64 +/- 0.50 D,0.58 +/- 0.44 D,0.59 +/- 0.41 D和0.62 +/- 0.45 D;单个光线跟踪方法的MAE分别为0.66 +/- 0.52 D,0.59 +/- 0.45 D,0.59 +/- 0.43 D和0.62 +/- 0.50D。薄透镜和射线追踪方法之间没有发现统计学差异。结论:在正常眼和屈光手术后的眼睛中,理论薄透镜公式在人工晶状体屈光度计算中的准确性与射线追踪法相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号