...
首页> 外文期刊>Journal of Computational Physics >A semi-implicit level set method for structural shape and topology optimization
【24h】

A semi-implicit level set method for structural shape and topology optimization

机译:用于结构形状和拓扑优化的半隐式水平集方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new level set method for structural shape and topology optimization using a semi-implicit scheme. Structural boundary is represented implicitly as the zero level set of a higher-dimensional scalar function and an appropriate time-marching scheme is included to enable the discrete level set processing. In the present study, the Hamilton-Jacobi partial differential equation (PDE) is solved numerically using a semi-implicit additive operator splitting (AOS) scheme rather than explicit schemes in conventional level set methods. The main feature of the present method is it does not suffer from any time step size restriction, as all terms relevant to stability are discretized in an implicit manner. The semi-implicit scheme with additive operator splitting treats all coordinate axes equally in arbitrary dimensions with good rotational invariance. Hence, the present scheme for the level set equations is stable for any practical time steps and numerically easy to implement with high efficiency. Resultantly, it allows enhanced relaxation on the time step size originally limited by the Courant-Friedrichs-Lewy (CFL) condition of the explicit schemes. The stability and computational efficiency can therefore be greatly improved in advancing the level set evolvements. Furthermore, the present method avoids additional cost to globally reinitialize the level set function for regularization purpose. It is noted that the periodically applied reinitializations are time-consuming procedures. In particular, the proposed method is capable of creating new holes freely inside the design domain via boundary incorporating, splitting and merging processes, which makes the final design independent of initial guess, and helps reduce the probability of converging to a local minimum. The availability of the present method is demonstrated with two widely studied examples in the framework of the structural stiffness designs. (c) 2008 Elsevier Inc. All rights reserved.
机译:本文提出了一种使用半隐式方案进行结构形状和拓扑优化的新的水平集方法。结构边界隐式表示为高维标量函数的零级集合,并且包含适当的时间步调方案以启用离散级集合处理。在本研究中,汉密尔顿-雅各比偏微分方程(PDE)使用半隐式加性算子分裂(AOS)方案而不是常规水平集方法中的显式方案进行数值求解。本方法的主要特征是它不受任何时间步长限制,因为所有与稳定性有关的术语都以隐式方式离散化。具有加法运算符拆分的半隐式方案在任意尺寸上均等地对待所有坐标轴,并具有良好的旋转不变性。因此,用于水平集方程的本方案对于任何实际时间步都是稳定的,并且在数值上容易以高效率实现。结果,它允许在最初受显式方案的Courant-Friedrichs-Lewy(CFL)条件限制的时间步长上得到增强的放松。因此,在推进水平集演进时,可以极大地提高稳定性和计算效率。此外,本方法避免了为了正则化目的而全局重新初始化水平集功能的额外成本。注意,定期应用的重新初始化是耗时的过程。特别地,所提出的方法能够通过边界合并,分割和合并过程在设计域内自由创建新的孔,这使得最终设计独立于初始猜测,并有助于降低收敛到局部最小值的可能性。在结构刚度设计的框架内,通过两个广泛研究的实例证明了本方法的可用性。 (c)2008 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号