...
首页> 外文期刊>Journal of Composite Materials >Damage progression in open-hole tension laminates by the SIFT-EFM approach
【24h】

Damage progression in open-hole tension laminates by the SIFT-EFM approach

机译:通过SIFT-EFM方法进行的裸眼张力层压板的损伤进展

获取原文
获取原文并翻译 | 示例
           

摘要

Predicting and modeling progressive damage in fiber-reinforced composite structures up to and including final failure is a considerable challenge because damage in composite materials is extremely complex, involving multiple modes, such as delamination, transverse microcracking, fiber breakage, fiber pullout, etc. Indeed, damage in composites should be studied at different length scales, ranging from the micromechanical to the macromechanical specimen and structural scales. The challenge, however, is in finding theories and methodologies that will faithfully reflect the structural effects of damage progression without involving an inordinate amount of detail (and effort) in the model, so that designers and engineers will have practical tools. In this article, a novel finite element-based method for modeling progressive damage in fiber-reinforced composites-is presented. The element-failure method (EFM) is based on the simple idea that the nodal forces of an element of a damaged composite material can be modified to reflect the general state of damage and loading. This has an advantage over the usual material property degradation approaches in that because the stiffness matrix of the element is not changed, computational convergence is guaranteed, resulting in a robust modeling method. When employed with a suitable micromechanics-based failure criterion, it may evolve into an engineering tool for mapping damage initiation and propagation in composite structures. Here, we have utilized the micromechanical information contained in a new strain invariant failure theory (SIFT) to guide the nodal force modification scheme to model progressive damage. As an application of the SIFT-EFM approach, we present a rational nodal force modification scheme for the modeling of progressive damage in quasi-isotropic composite laminates with open holes, subjected to remote tensile loads. The proposed nodal force modification scheme assumes loss of load-bearing capability in the direction transverse to the fibers for the case of local transverse microcracking, and assumes total loss of load-bearing capability when both transverse microcracking and fiber rupture occur. The study investigates the effect of stacking or layup sequence and shows that it is important to refine the model in the through-thickness dimension and includes nodal force modification for the out-of-plane component. It reinforces the view that damage propagation in composites is a complex three-dimensional event. When compared with experimental data, the predicted damage maps and final failure loads show correct trends and reasonable agreement.
机译:预测和建模纤维增强复合材料结构中直至甚至包括最终破坏的渐进损伤是一个巨大的挑战,因为复合材料的损伤非常复杂,涉及多种模式,例如分层,横向微裂纹,纤维断裂,纤维拔出等。 ,应在不同的长度尺度上研究复合材料的损伤,从微观力学到宏观力学试样以及结构尺度。但是,挑战在于找到能够忠实地反映损伤进展的结构效应而又不涉及模型中过多细节(和工作量)的理论和方法,以便设计人员和工程师拥有实用的工具。在本文中,提出了一种新颖的基于有限元的纤维增强复合材料渐进损伤建模方法。单元破坏方法(EFM)基于以下简单思想:可以修改损坏的复合材料的元素的节点力,以反映破坏和载荷的一般状态。与通常的材料性能退化方法相比,它具有一个优势,因为不更改元素的刚度矩阵,因此可以保证计算收敛,从而实现了可靠的建模方法。当与合适的基于微力学的破坏准则一起使用时,它可能会演变成一种工程工具,用于绘制复合结构中损伤的开始和传播的映射。在这里,我们利用了新的应变不变破坏理论(SIFT)中包含的微机械信息来指导节点力修正方案来模拟渐进式破坏。作为SIFT-EFM方法的一种应用,我们提出了一种合理的节点力修正方案,用于模拟带有开孔的准各向同性复合材料层板的渐进式损伤,并承受远距离的拉伸载荷。提出的节点力修正方案假设在局部横向微裂纹的情况下,在横向于纤维的方向上的承载能力损失,并且在横向微裂纹和纤维断裂同时发生时,假设承载能力全部丧失。这项研究调查了堆叠或叠置顺序的影响,并显示出在整个厚度范围内完善模型的重要性,并且包括对平面外组件的节点力修正。它强化了这样的观点,即复合材料中的损伤传播是一个复杂的三维事件。当与实验数据进行比较时,预测的损伤图和最终破坏载荷显示出正确的趋势和合理的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号