首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs)
【24h】

Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs)

机译:通过图形处理单元(GPU)加速的分子动力学模拟,充分水合的DMPC双层的结构,动态和静电特性

获取原文
获取原文并翻译 | 示例
           

摘要

We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S_(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral membrane proteins. We envision that this technology will push the boundaries of fully atomic-resolution modeling of these biological systems, thus enabling unprecedented exploration of meso-scale phenomena (mechanisms, kinetics, energetics) with atomic detail at commodity hardware prices.
机译:我们提供了使用当前最先进的不可极化力场和本地GPU启用的分子动力学代码FEN ZI在图形处理单元(GPU)上进行的完全水合DMPC双层分子动力学模拟的结果。我们使用粒子网格Ewald方法(PME)精确处理条件收敛的静电相互作用能,以求解周期边界条件下静电势的Poisson方程。我们讨论了在GPU上实现PME算法的要素以及相关的性能问题。我们将继续展示使用我们的程序FEN ZI对扩展脂质双层系统进行仿真的结果。我们对DMPC双层系统进行了模拟,该系统由在显式溶剂中的17,004、68,484和273,936个原子组成。我们提出了双层结构性质(原子序数密度,电子密度分布),氘序参数(S_(CD)),静电性质(偶极势,水偶极矩)和水的取向性质。预测的性能证明与实验和先前的全原子分子动力学模拟具有极好的一致性。我们观察到在不同系统尺寸下,计算出的结构或静电性质在统计学上没有显着差异,这表明较小的双层模拟(少于100个脂质分子)可以等效地表示与较大系统(超过1000个脂质分子)相关的结构和静电性质。我们强调,这三种系统尺寸表示将在其他属性(例如,表面毛细管波动力学或与表面张力相关的效应)中具有差异,而在当前研究中未对此进行探讨。后者的属性本质上取决于系统大小。这一贡献表明,将新兴的GPU技术应用于一类重要的生物环境(脂双层及其相关的完整膜蛋白)的研究是合适的。我们设想,这项技术将突破这些生物系统的完整原子分辨率建模的界限,从而实现以商品硬件价格空前地探索具有原子细节的介观现象(机制,动力学,能量学)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号