首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >A computational study of unique properties of pillar[n]quinones: Self-assembly to tubular structures and potential applications as electron acceptors and anion recognizers
【24h】

A computational study of unique properties of pillar[n]quinones: Self-assembly to tubular structures and potential applications as electron acceptors and anion recognizers

机译:柱[n]醌独特性质的计算研究:管状结构的自组装及其作为电子受体和阴离子识别剂的潜在应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Density functional theory has been used to calculate the thermodynamic properties and molecular orbitals of pillar[n]quinones. Pillar[n]quinones are expected to be effective electron acceptors and the ability to accept more than one electron increases with the size of the interior cavity. Pillar[5]quinone and pillar[7]quinone show a great intramolecular charge transfer upon the electron excitation from highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) as indicated by a large difference of electron distributions between their HOMO and LUMO and a notable dipole moment difference between the ground and first triplet excited state. The aggregation of pillar[n]quinones leads to tubular dimeric structures joined by 2n Ci-HA-O nonclassical hydrogen bonds (HBs) with binding energies about 2 kcal/mol per HB. The longitudinal extension of the supramolecular self-assembly of pillar[n]quinone may be adjustable through forming and breaking their HBs by controlling the surrounding environment. The tunability of the diameter of the tubular structures can be achieved by changing the number of quinone units in the pillar[n]quinone. The electrostatic potential maps of pillar[n]quinones indicate that the positive charge in the interior cavity decreases as the number of quinone units increases. Chloride and bromide anions are chosen to examine the noncovalent anion-π interactions between pillar[n]quinones and captured anions. The calculations show that the better compatibility of the effective radius of the anions with the interior dimension of pillar[n]quinone leads to larger stabilization energy. The selectivity of spatial matching and specific interaction of pillar[n]quinone is believed to possibly serve as a candidate for ionic and molecular recognition.
机译:密度泛函理论已用于计算柱[n]醌的热力学性质和分子轨道。期望柱[n]醌是有效的电子受体,并且随着内部空腔尺寸的增加,接受一个以上电子的能力也将增强。柱[5]醌和柱[7]醌在电子激发时从最高占据分子轨道(HOMO)到最低未占据分子轨道(LUMO)表现出很大的分子内电荷转移,这表明它们的HOMO和LUMO和基态与第一个三重态激发态之间存在明显的偶极矩差。柱[n]醌的聚集导致管状的二聚体结构通过2n个C 1 -HA-O非经典氢键(HBs)结合,结合能为每个HB 2 kcal / mol。柱[n]醌的超分子自组装体的纵向延伸可通过控制周围环境通过形成和破坏它们的HBs来调节。可以通过改变柱[n]醌中醌单元的数量来实现管状结构的直径的可调性。柱[n]醌的静电势图表明,随着醌单元数量的增加,内部空腔中的正电荷减少。选择氯化物和溴化物阴离子来检查柱[n]醌和捕获的阴离子之间的非共价阴离子-π相互作用。计算表明,阴离子的有效半径与柱[n]醌的内部尺寸更好的相容性导致较大的稳定能。据信,柱[n]醌的空间匹配和特定相互作用的选择性可能会成为离子和分子识别的候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号