...
首页> 外文期刊>Journal of Climate >Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models.
【24h】

Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models.

机译:在CMIP5地球系统模型中分析多年冻土的热力学和对气候变化的响应。

获取原文
获取原文并翻译 | 示例

摘要

The authors analyze global climate model predictions of soil temperature [from the Coupled Model Intercomparison Project phase 5 (CMIP5) database] to assess the models' representation of current-climate soil thermal dynamics and their predictions of permafrost thaw during the twenty-first century. The authors compare the models' predictions with observations of active layer thickness, air temperature, and soil temperature and with theoretically expected relationships between active layer thickness and air temperature annual mean- and seasonal-cycle amplitude. Models show a wide range of current permafrost areas, active layer statistics (cumulative distributions, correlations with mean annual air temperature, and amplitude of seasonal air temperature cycle), and ability to accurately model the coupling between soil and air temperatures at high latitudes. Many of the between-model differences can be traced to differences in the coupling between either near-surface air and shallow soil temperatures or shallow and deeper (1 m) soil temperatures, which in turn reflect differences in snow physics and soil hydrology. The models are compared with observational datasets to benchmark several aspects of the permafrost-relevant physics of the models. The CMIP5 models following multiple representative concentration pathways (RCP) show a wide range of predictions for permafrost loss: 2%-66% for RCP2.6, 15%-87% for RCP4.5, and 30%-99% for RCP8.5. Normalizing the amount of permafrost loss by the amount of high-latitude warming in the RCP4.5 scenario, the models predict an absolute loss of 1.6+or-0.7 million km2 permafrost per 1 degrees C high-latitude warming, or a fractional loss of 6%-29% degrees C-1.Digital Object Identifier http://dx.doi.org/10.1175/JCLI-D-12-00228.1
机译:作者分析了全球气候模型对土壤温度的预测(来自耦合模型比较项目第5阶段(CMIP5)数据库),以评估该模型对当前气候土壤热力学的表示及其对21世纪永久冻土融化的预测。作者将模型的预测与活动层厚度,空气温度和土壤温度的观测值进行了比较,并与活动层厚度与空气温度的年平均和季节性周期振幅之间的理论期望关系进行了比较。模型显示了广泛的当前多年冻土区域,活动层统计信息(累积分布,与年平均气温的相关性以及季节性气温周期的幅值),以及能够准确地模拟高纬度土壤与气温之间的耦合的能力。模型间的许多差异可以追溯到近地表空气与浅层土壤温度或浅层和深层(1 m)土壤温度之间耦合的差异,这又反映了雪物理学和土壤水文学的差异。将模型与观测数据集进行比较,以对模型中与多年冻土有关的物理学的几个方面进行基准测试。遵循多个代表性浓度路径(RCP)的CMIP5模型显示了多种冻土流失预测:RCP2.6为2%-66%,RCP4.5为15%-87%,RCP8为30%-99%。 5,通过在RCP4.5情景中用高纬度变暖量对多年冻土损失量进行归一化,模型预测每1摄氏度的高温,绝对损失为1.6+或-0.7百万km 2 永久冻土纬度变暖或6%-29%摄氏度C -1 的部分损失。数字对象标识符http://dx.doi.org/10.1175/JCLI-D-12-00228.1

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号