...
首页> 外文期刊>Journal of Chemometrics >Weighting hyperspectral image data for improved multivariate curve resolution results
【24h】

Weighting hyperspectral image data for improved multivariate curve resolution results

机译:加权高光谱图像数据以改善多元曲线分辨率结果

获取原文
获取原文并翻译 | 示例

摘要

The combination of hyperspectral confocal fluorescence microscopy and multivariate curve resolution (MCR) provides an ideal system for improved quantitative imaging when multiple fluorophores are present. However, the presence of multiple noise sources limits the ability of MCR to accurately extract pure-component spectra when there is high spectral and/or spatial overlap between multiple fluorophores. Previously, MCR results were improved by weighting the spectral images for Poisson-distributed noise, but additional noise sources are often present. We have identified and quantified ail the major noise sources in hyperspectral fluorescence images. Two primary noise sources were found: Poisson-distributed noise and detector-read noise. We present methods to quantify detector-read noise variance and to empirically determine the electron multiplying CCD (EMCCD) gain factor required to compute the Poisson noise variance. We have found that properly weighting spectral image data to account for both noise sources improved MCR accuracy. In this paper, we demonstrate three weighting schemes applied to a real hyperspectral corn leaf image and to simulated data based upon this same image. MCR applied to both real and simulated hyperspectral images weighted to compensate for the two major noise sources greatly improved the extracted pure emission spectra and their concentrations relative to MCR with either unweighted or Poisson-only weighted data. Thus, properly identifying and accounting for the major noise sources in hyperspectral images can serve to improve the MCR results. These methods are very general and can be applied to the multivariate analysis of spectral images whenever CCD or EMCCD detectors are used.
机译:当存在多个荧光团时,高光谱共聚焦荧光显微镜和多变量曲线分辨率(MCR)的结合为改进定量成像提供了理想的系统。但是,当多个荧光团之间存在高光谱和/或空间重叠时,存在多个噪声源会限制MCR准确提取纯组分光谱的能力。以前,通过加权Poisson分布噪声的频谱图像可以改善MCR结果,但是通常会出现其他噪声源。我们已经识别并量化了所有高光谱荧光图像中的主要噪声源。发现了两个主要噪声源:泊松分布噪声和检测器读取噪声。我们提出了量化探测器读取的噪声方差并凭经验确定计算泊松噪声方差所需的电子倍增CCD(EMCCD)增益因子的方法。我们发现适当加权频谱图像数据以解决两个噪声源都改善了MCR精度。在本文中,我们演示了三种加权方案分别应用于真实的高光谱玉米叶片图像和基于同一图像的模拟数据。 MCR应用于加权的真实和模拟高光谱图像,以补偿两个主要噪声源,相对于具有未加权或仅泊松加权数据的MCR,MCR极大地改善了提取的纯发射光谱及其浓度。因此,适当地识别和解决高光谱图像中的主要噪声源可以改善MCR结果。这些方法非常通用,每当使用CCD或EMCCD检测器时,便可以应用于光谱图像的多元分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号